Description

Book Synopsis
This textbook provides an introduction to the world of numerical modeling in the physical sciences, focusing more specifically on earth and planetary sciences. It is designed to lead the reader through the process of defining the mathematical or physical model of interest and applying numerical methods to approximate and explore the solutions to these models, while also providing a quantitative assessment of the limitations, performance and quality of these approximations. The book is designed to provide a self-contained reference by including the mathematical foundations required to understand the models and their convergence. It includes a detailed discussion of models for ordinary systems of equation and partial differential equations, with pseudo-codes detailing the solution procedure. Examples are drawn from the fields of earth and planetary sciences, including, geochemical box models, non-linear ordinary differential equations describing the evolution of subvolcanic magma chambers, the mass conservation of cosmogenic nuclides in soils, diffusion in minerals, the hillslope equation, the advection-diffusion and wave equations and the shallow water equations. Featuring numerous examples drawn from earth and planetary sciences, the content of this book has been used by the author to teach numerical methods classes at the undergraduate and graduate levels over several years, and will provide an excellent resources for teachers and learners in this area.

Introduction to Numerical Modeling in the Earth

Product form

£31.34

Includes FREE delivery

RRP £32.99 – you save £1.65 (5%)

Order before 4pm today for delivery by Fri 19 Dec 2025.

2 in stock


    View other formats and editions of Introduction to Numerical Modeling in the Earth by

    Publisher: Oxford University Press
    Publication Date: 7/10/2025
    ISBN13: 9780198802723, 978-0198802723
    ISBN10: 0198802722

    Description

    Book Synopsis
    This textbook provides an introduction to the world of numerical modeling in the physical sciences, focusing more specifically on earth and planetary sciences. It is designed to lead the reader through the process of defining the mathematical or physical model of interest and applying numerical methods to approximate and explore the solutions to these models, while also providing a quantitative assessment of the limitations, performance and quality of these approximations. The book is designed to provide a self-contained reference by including the mathematical foundations required to understand the models and their convergence. It includes a detailed discussion of models for ordinary systems of equation and partial differential equations, with pseudo-codes detailing the solution procedure. Examples are drawn from the fields of earth and planetary sciences, including, geochemical box models, non-linear ordinary differential equations describing the evolution of subvolcanic magma chambers, the mass conservation of cosmogenic nuclides in soils, diffusion in minerals, the hillslope equation, the advection-diffusion and wave equations and the shallow water equations. Featuring numerous examples drawn from earth and planetary sciences, the content of this book has been used by the author to teach numerical methods classes at the undergraduate and graduate levels over several years, and will provide an excellent resources for teachers and learners in this area.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account