Description

Book Synopsis
This textbook is about generalized functions and some of their integral tra- forms in one variable. It is based on the approach introduced by the Japanese mathematician Mikio Sato. We mention this because the term hyperfunction that Sato has given to his generalization of the concept of function is sometimes used today to denote generalized functions based on other approaches (distributions, Mikusinski's operators etc. ). I have written this book because I am delighted by the intuitive idea behind Sato's approach which uses the classical complex fu- tion theory to generalize the notion of function of a real variable. In my opinion, Sato'swayofintroducingthegeneralizedconceptofafunctionislessabstractthan the one of Laurent Schwartz who de?nes his distributions as linear functionals on some space of test functions. On the other hand, I was quickly led to recognize that very few colleagues (mathematicians included) knew anything about Satos's approach. PerhapsSato andhis schoolis not entirelyblamelessfor this state of - fairs. For severaldecades no elementary textbook addressinga wider audience was available (at least in English). Zealots delighted by the appealing intuitive idea of the approach have probably found their enthusiasm rapidly diminished because of the adopted style of exposition and the highly ambitious abstract mathematical concepts used in the available books and articles. Fortunately, some years ago, I found Isac Imai's Book Applied Hyperfunction Theory which explains and applies Sato's hyperfunctions in a concrete, but nontrivial way, and thereby reveals their computational power.

Trade Review

From the reviews:

“The intended audience of the book is advanced undergraduate students, graduate students, and research professionals in mathematical sciences. The book can serve as a research reference or a supplement to courses or seminars. … this book provides an excellent presentation of integral transforms of hyperfunctions with examples of applications to integral equations and ordinary and partial differential equations. … would be successful as a senior undergraduate- or graduate-level text in mathematics, physics, and engineering, as well as a research reference for professionals in those fields.” (Lokenath Debnath, SIAM Review, Vol. 53 (1), 2011)

“This is an introductory and elementary textbook about Sato’s hyperfunctions in one variable and some of their integral transforms. … mainly addressed to applied mathematicians, physicists and engineers, it may also be useful for pure mathematicians seeking a first encounter with Sato’s beautiful conception of generalized functions. … The only prerequisites for the reader are elementary notions from complex function theory of one variable and some familiarity with the classical Laplace transform. This makes the material of the book accessible even to undergraduate students.” (Jasson Vindas, Mathematical Reviews, Issue 2012 a)

“This monograph aims at introducing the theory of hyperfunctions and some of their integral transforms to a wide range of readers, since the author recognized that the noble idea of hyperfunction was known to only few mathematicians.” (Dohan Kim, Zentralblatt MATH, Vol. 1201, 2011)



Table of Contents
Preface.- 1 Introduction to Hyperfunctions.- 2 Analytic Properties.- 3 Laplace Transforms.- 4 Fourier Transforms.- 5 Hilbert Transforms.- 6 Mellin Transforms.- 7 Hankel Transforms.- A Complements.- B Tables.- List of Symbols.- Bibliography. Index.

Introduction to Hyperfunctions and Their Integral

Product form

£71.99

Includes FREE delivery

RRP £79.99 – you save £8.00 (10%)

Order before 4pm today for delivery by Tue 23 Dec 2025.

A Hardback by Urs Graf

Out of stock


    View other formats and editions of Introduction to Hyperfunctions and Their Integral by Urs Graf

    Publisher: Birkhauser Verlag AG
    Publication Date: 12/03/2010
    ISBN13: 9783034604079, 978-3034604079
    ISBN10: 3034604076

    Description

    Book Synopsis
    This textbook is about generalized functions and some of their integral tra- forms in one variable. It is based on the approach introduced by the Japanese mathematician Mikio Sato. We mention this because the term hyperfunction that Sato has given to his generalization of the concept of function is sometimes used today to denote generalized functions based on other approaches (distributions, Mikusinski's operators etc. ). I have written this book because I am delighted by the intuitive idea behind Sato's approach which uses the classical complex fu- tion theory to generalize the notion of function of a real variable. In my opinion, Sato'swayofintroducingthegeneralizedconceptofafunctionislessabstractthan the one of Laurent Schwartz who de?nes his distributions as linear functionals on some space of test functions. On the other hand, I was quickly led to recognize that very few colleagues (mathematicians included) knew anything about Satos's approach. PerhapsSato andhis schoolis not entirelyblamelessfor this state of - fairs. For severaldecades no elementary textbook addressinga wider audience was available (at least in English). Zealots delighted by the appealing intuitive idea of the approach have probably found their enthusiasm rapidly diminished because of the adopted style of exposition and the highly ambitious abstract mathematical concepts used in the available books and articles. Fortunately, some years ago, I found Isac Imai's Book Applied Hyperfunction Theory which explains and applies Sato's hyperfunctions in a concrete, but nontrivial way, and thereby reveals their computational power.

    Trade Review

    From the reviews:

    “The intended audience of the book is advanced undergraduate students, graduate students, and research professionals in mathematical sciences. The book can serve as a research reference or a supplement to courses or seminars. … this book provides an excellent presentation of integral transforms of hyperfunctions with examples of applications to integral equations and ordinary and partial differential equations. … would be successful as a senior undergraduate- or graduate-level text in mathematics, physics, and engineering, as well as a research reference for professionals in those fields.” (Lokenath Debnath, SIAM Review, Vol. 53 (1), 2011)

    “This is an introductory and elementary textbook about Sato’s hyperfunctions in one variable and some of their integral transforms. … mainly addressed to applied mathematicians, physicists and engineers, it may also be useful for pure mathematicians seeking a first encounter with Sato’s beautiful conception of generalized functions. … The only prerequisites for the reader are elementary notions from complex function theory of one variable and some familiarity with the classical Laplace transform. This makes the material of the book accessible even to undergraduate students.” (Jasson Vindas, Mathematical Reviews, Issue 2012 a)

    “This monograph aims at introducing the theory of hyperfunctions and some of their integral transforms to a wide range of readers, since the author recognized that the noble idea of hyperfunction was known to only few mathematicians.” (Dohan Kim, Zentralblatt MATH, Vol. 1201, 2011)



    Table of Contents
    Preface.- 1 Introduction to Hyperfunctions.- 2 Analytic Properties.- 3 Laplace Transforms.- 4 Fourier Transforms.- 5 Hilbert Transforms.- 6 Mellin Transforms.- 7 Hankel Transforms.- A Complements.- B Tables.- List of Symbols.- Bibliography. Index.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account