Description

Book Synopsis

The overall structure of this new edition is three-tier: Part I presents the basics, Part II is concerned with methodological issues, and Part III discusses advanced topics. In the second edition the authors have reorganized the material to focus on problems, how to represent them, and then how to choose and design algorithms for different representations. They also added a chapter on problems, reflecting the overall book focus on problem-solvers, a chapter on parameter tuning, which they combined with the parameter control and "how-to" chapters into a methodological part, and finally a chapter on evolutionary robotics with an outlook on possible exciting developments in this field.

The book is suitable for undergraduate and graduate courses in artificial intelligence and computational intelligence, and for self-study by practitioners and researchers engaged with all aspects of bioinspired design and optimization.



Trade Review

“This book aims to give a thorough introduction to evolutionary computing, covering techniques and methodological issues. … the book does a good job of giving a general overview of the field. It assumes very little initial knowledge and the breath of its coverage is very impressive. … the supporting website does contain suggested further reading for each of the chapters.” (Barry Wilkes, bcs The Chartered Institute for IT, bcs.org, May, 2016)

“This second edition of the book under review is very timely and corresponds to Evolutionary Computation (EC)’s status as an established methodology. … The chapter subdivision into different algorithms used in the first edition … has been replaced by a more suitable student/researcher-oriented approach; this is also supported by the website www.evolutionarycomputation.org, which contains a trove of exercises, slides and extra bibliographic references.” (Anna I. Esparcia-Alcázar, Mathematical Reviews, May, 2016)

“Introduction to Evolutionary Computing is an excellent and readable text that should find a place on the bookshelf of anyone who researches and/or teaches in this domain. Suitable for a graduate course or upper-level undergraduate course in Evolutionary Computing, it is also a superior and well-organized reference book. … papers and presentations cited in the text provide a marvelous literature review. … The clarity of exposition and detail are excellent … .” (Jeffrey L. Popyack, Genetic Programming and Evolvable Machines, Vol. 17 (2), 2016)



Table of Contents

Problems to Be Solved.- Evolutionary Computing: The Origins.- What Is an Evolutionary Algorithm?.- Representation, Mutation, and Recombination.- Fitness, Selection, and Population Management.- Popular Evolutionary Algorithm Variants.- Hybridisation with Other Techniques: Memetic Algorithms.- Nonstationary and Noisy Function Optimisation.- Multiobjective Evolutionary Algorithms.- Constraint Handling.- Interactive Evolutionary Algorithms.- Coevolutionary Systems.- Theory.- Evolutionary Robotics.- Parameters and Parameter Tuning.- Parameter Control.- Working with Evolutionary Algorithms.- References.

Introduction to Evolutionary Computing

Product form

£35.99

Includes FREE delivery

RRP £39.99 – you save £4.00 (10%)

Order before 4pm tomorrow for delivery by Thu 22 Jan 2026.

A Paperback by A.E. Eiben, J.E. Smith

1 in stock


    View other formats and editions of Introduction to Evolutionary Computing by A.E. Eiben

    Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
    Publication Date: 17/10/2016
    ISBN13: 9783662499856, 978-3662499856
    ISBN10: 3662499851

    Description

    Book Synopsis

    The overall structure of this new edition is three-tier: Part I presents the basics, Part II is concerned with methodological issues, and Part III discusses advanced topics. In the second edition the authors have reorganized the material to focus on problems, how to represent them, and then how to choose and design algorithms for different representations. They also added a chapter on problems, reflecting the overall book focus on problem-solvers, a chapter on parameter tuning, which they combined with the parameter control and "how-to" chapters into a methodological part, and finally a chapter on evolutionary robotics with an outlook on possible exciting developments in this field.

    The book is suitable for undergraduate and graduate courses in artificial intelligence and computational intelligence, and for self-study by practitioners and researchers engaged with all aspects of bioinspired design and optimization.



    Trade Review

    “This book aims to give a thorough introduction to evolutionary computing, covering techniques and methodological issues. … the book does a good job of giving a general overview of the field. It assumes very little initial knowledge and the breath of its coverage is very impressive. … the supporting website does contain suggested further reading for each of the chapters.” (Barry Wilkes, bcs The Chartered Institute for IT, bcs.org, May, 2016)

    “This second edition of the book under review is very timely and corresponds to Evolutionary Computation (EC)’s status as an established methodology. … The chapter subdivision into different algorithms used in the first edition … has been replaced by a more suitable student/researcher-oriented approach; this is also supported by the website www.evolutionarycomputation.org, which contains a trove of exercises, slides and extra bibliographic references.” (Anna I. Esparcia-Alcázar, Mathematical Reviews, May, 2016)

    “Introduction to Evolutionary Computing is an excellent and readable text that should find a place on the bookshelf of anyone who researches and/or teaches in this domain. Suitable for a graduate course or upper-level undergraduate course in Evolutionary Computing, it is also a superior and well-organized reference book. … papers and presentations cited in the text provide a marvelous literature review. … The clarity of exposition and detail are excellent … .” (Jeffrey L. Popyack, Genetic Programming and Evolvable Machines, Vol. 17 (2), 2016)



    Table of Contents

    Problems to Be Solved.- Evolutionary Computing: The Origins.- What Is an Evolutionary Algorithm?.- Representation, Mutation, and Recombination.- Fitness, Selection, and Population Management.- Popular Evolutionary Algorithm Variants.- Hybridisation with Other Techniques: Memetic Algorithms.- Nonstationary and Noisy Function Optimisation.- Multiobjective Evolutionary Algorithms.- Constraint Handling.- Interactive Evolutionary Algorithms.- Coevolutionary Systems.- Theory.- Evolutionary Robotics.- Parameters and Parameter Tuning.- Parameter Control.- Working with Evolutionary Algorithms.- References.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account