Description

Book Synopsis
A project-based guide to the basics of deep learning.

This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach.

Each chapter includes a p

Introduction to Deep Learning The MIT Press

Product form

£29.70

Includes FREE delivery

RRP £33.00 – you save £3.30 (10%)

Order before 4pm today for delivery by Thu 8 Jan 2026.

A Hardback by Eugene Charniak

1 in stock


    View other formats and editions of Introduction to Deep Learning The MIT Press by Eugene Charniak

    Publisher: MIT Press Ltd
    Publication Date: 29/01/2019
    ISBN13: 9780262039512, 978-0262039512
    ISBN10: 0262039516

    Description

    Book Synopsis
    A project-based guide to the basics of deep learning.

    This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach.

    Each chapter includes a p

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account