Description

Book Synopsis
This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios. The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning, providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT. By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems. What You Will LearnWhat are deep neural networks?What is transfer learning, multi-task learning, and end-to-end learning?What are hyperparameters, bias, variance, and data division?What are CNN and RNN?Who This Book Is ForMachine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning

Handson Deep Learning

Product form

£43.99

Includes FREE delivery

RRP £54.99 – you save £11.00 (20%)

Order before 4pm today for delivery by Thu 8 Jan 2026.

A Paperback by Harsh Bhasin

10 in stock


    View other formats and editions of Handson Deep Learning by Harsh Bhasin

    Publisher: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
    Publication Date: 1/27/2024
    ISBN13: 9798868810343, 979-8868810343
    ISBN10: 9798868810343

    Description

    Book Synopsis
    This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios. The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning, providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT. By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems. What You Will LearnWhat are deep neural networks?What is transfer learning, multi-task learning, and end-to-end learning?What are hyperparameters, bias, variance, and data division?What are CNN and RNN?Who This Book Is ForMachine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account