Description

Book Synopsis

This handbook on vacuolar and plasma membrane H+-ATPases is the first to focus on an essential link between vacuolar H+-ATPase and the glycolysis metabolic pathway to understand the mechanism of diabetes and the metabolism of cancer cells. It presents recent findings on the structure and function of vacuolar H+-ATPase in glucose promoting assembly and signaling, in addition to describing the regulatory mechanisms of vacuolar H+-ATPase in yeast cells, neural stem cells, kidney cells, cancer cells, as well as under diabetic conditions.



Table of Contents

Vacuolar H+-ATPase Assembly. Structure of Prokaryotic V type ATPase/synthase. The function of V-ATPase in the degradation of gluconeogenic enzymes in the yeast vacuole. The Role of Vacuolar ATPase in the Regulation of Npt2a Trafficking. Cytosolic pH regulated by glucose promotes V-ATPase assembly. Vacuolar H+-ATPase (V-ATPase) activated by glucose, a possible link to diabetic disease. Vacuolar proton pump (V-ATPase) and insulin secretion. Role of V-ATPase, cytohesin-2/Arf6 and aldolase in regulation of endocytosis: Implications for diabetic nephropathy. Renal Vacuolar H+-ATPase Regulation. Long-term Regulation of Vacuolar H+-ATPase by Angiotensin II in Proximal Tubule Cells. Vacuolar H+-ATPase in Distal Renal Tubular Acidosis and Diabetes. Vacuolar H+-ATPase in Cancer and Diabetes. The a2 isoform of Vacuolar ATPase and Cancer-Related Inflammation. V-ATPases in oral squamous cell carcinoma. Vacuolar H(+)-ATPase : functional mechanism and potential as a target for cancer chemotherapy. Vacuolar H+-ATPase Maintains Neural Stem Cells in the Developing Mouse Cortex. The relationship between glucose-induced calcium signaling and activation of the plasma membrane H+-ATPase in Saccharomyces cerevisiae cells.

Handbook of H+-ATPases

Product form

£139.50

Includes FREE delivery

RRP £155.00 – you save £15.50 (10%)

Order before 4pm tomorrow for delivery by Tue 23 Dec 2025.

A Hardback by Suguru Nakamura

5 in stock


    View other formats and editions of Handbook of H+-ATPases by Suguru Nakamura

    Publisher: Pan Stanford Publishing Pte Ltd
    Publication Date: 19/03/2014
    ISBN13: 9789814411912, 978-9814411912
    ISBN10: 9814411914

    Description

    Book Synopsis

    This handbook on vacuolar and plasma membrane H+-ATPases is the first to focus on an essential link between vacuolar H+-ATPase and the glycolysis metabolic pathway to understand the mechanism of diabetes and the metabolism of cancer cells. It presents recent findings on the structure and function of vacuolar H+-ATPase in glucose promoting assembly and signaling, in addition to describing the regulatory mechanisms of vacuolar H+-ATPase in yeast cells, neural stem cells, kidney cells, cancer cells, as well as under diabetic conditions.



    Table of Contents

    Vacuolar H+-ATPase Assembly. Structure of Prokaryotic V type ATPase/synthase. The function of V-ATPase in the degradation of gluconeogenic enzymes in the yeast vacuole. The Role of Vacuolar ATPase in the Regulation of Npt2a Trafficking. Cytosolic pH regulated by glucose promotes V-ATPase assembly. Vacuolar H+-ATPase (V-ATPase) activated by glucose, a possible link to diabetic disease. Vacuolar proton pump (V-ATPase) and insulin secretion. Role of V-ATPase, cytohesin-2/Arf6 and aldolase in regulation of endocytosis: Implications for diabetic nephropathy. Renal Vacuolar H+-ATPase Regulation. Long-term Regulation of Vacuolar H+-ATPase by Angiotensin II in Proximal Tubule Cells. Vacuolar H+-ATPase in Distal Renal Tubular Acidosis and Diabetes. Vacuolar H+-ATPase in Cancer and Diabetes. The a2 isoform of Vacuolar ATPase and Cancer-Related Inflammation. V-ATPases in oral squamous cell carcinoma. Vacuolar H(+)-ATPase : functional mechanism and potential as a target for cancer chemotherapy. Vacuolar H+-ATPase Maintains Neural Stem Cells in the Developing Mouse Cortex. The relationship between glucose-induced calcium signaling and activation of the plasma membrane H+-ATPase in Saccharomyces cerevisiae cells.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account