Description
Book Synopsis Graphs on Surfaces: Dualities, Polynomials, and Knots also provides a self-contained introduction to graphs on surfaces, generalized duals, topological graph polynomials, and knot polynomials that is accessible both to graph theorists and to knot theorists.
Trade ReviewFrom the reviews:
“Here, the venerable knot-theoretic and graph-theoretic themes find a host of unifying common generalizations. Undergraduates will appreciate the patient and visual development of the foundations, particularly the dualities (paired representations of a single structure). Summing Up: Recommended. Upper-division undergraduates through researchers/faculty.” (D. V. Feldman, Choice, Vol. 51 (7), March, 2014)
“This monograph is aimed at researchers both in graph theory and in knot theory. It should be accessible to a graduate student with a grounding in both subjects. There are (colour) diagrams throughout. … The monograph gives a unified treatment of various ideas that have been studied and used previously, generalising many of them in the process.” (Jessica Banks, zbMATH, Vol. 1283, 2014)
“The authors have composed a very interesting and valuable work. … For properly prepared readers … the book under review is the occasion for all sorts of fun including the inner life of ribbon groups, Tait graphs, Penrose polynomials, Tutte polynomials, and of course Jones polynomials and HOMFLY polynomials. This is fascinating mathematics, presented in a clear and accessible way.” (Michael Berg, MAA Reviews, October, 2013)
Table of Contents1. Embedded Graphs .- 2. Generalised Dualities .- 3. Twisted duality, cycle family graphs, and embedded graph equivalence .- 4. Interactions with Graph Polynomials .- 5. Applications to Knot Theory .- References .- Index .