Description
Book SynopsisGeometry provides a whole range of views on the universe, serving as the inspiration, technical toolkit and ultimate goal for many branches of mathematics and physics. This book introduces the ideas of geometry, and includes a generous supply of simple explanations and examples. The treatment emphasises coordinate systems and the coordinate changes that generate symmetries. The discussion moves from Euclidean to non-Euclidean geometries, including spherical and hyperbolic geometry, and then on to affine and projective linear geometries. Group theory is introduced to treat geometric symmetries, leading to the unification of geometry and group theory in the Erlangen program. An introduction to basic topology follows, with the MÃbius strip, the Klein bottle and the surface with g handles exemplifying quotient topologies and the homeomorphism problem. Topology combines with group theory to yield the geometry of transformation groups,having applications to relativity theory and quantum mech
Trade ReviewA welcome addition to the undergraduate library. Highly recommended. --Choice
Table of ContentsIntroduction; 1. Euclidean geometry; 2. Composing maps; 3. Non-Euclidean; 4. Affine geometry; 5. Projective geometry; 6. Geometry and group theory; 7. Topology; 8. Geometry of transformation groups; 9. Concluding remarks; A. Metrics; B. Linear algebra; References; Index.