Description

Book Synopsis
Hyperbolic Structures.- Trigonometry.- Y-Pieces and Twist Parameters.- The Collar Theorem.- Bers' Constant and the Hairy Torus.- The Teichmüller Space.- The Spectrum of the Laplacian.- Small Eigenvalues.- Closed Geodesics and Huber's Theorem.- Wolpert's Theorem.- Sunada's Theorem.- Examples of Isospectral Riemann Surfaces.- The Size of Isospectral Families.- Perturbations of the Laplacian in Teichmüller Space.

Trade Review

From the reviews:

"Anyone familiar with the author's hands-on approach to Riemann surfaces will be gratified by both the breadth and the depth of the topics considered here. The exposition is also extremely clear and thorough. Anyone not familiar with the author's approach is in for a real treat." —Mathematical Reviews

“Originally published as Volume 106 in the series Progress in Mathematics, this version is a reprint of the classic monograph, 1992 edition, consisting of two parts. … An appendix is devoted to curves and isotopies. The book is a very useful reference for researches and also for graduate students interested in the geometry of compact Riemann surfaces of constant curvature -- 1 and their length and eigenvalue spectra.” (Liliana Răileanu, Zentralblatt MATH, Vol. 1239, 2012)

“Geometry and Spectra of Compact Riemann Surfaces is a pleasure to read. There is a lot of motivation given, examples proliferate, propositions and theorems come equipped with clear proofs, and excellent drawings … . a fine piece of scholarship and a pedagogical treat.” (Michael Berg, The Mathematical Association of America, May, 2011)



Table of Contents
Hyperbolic Structures.- Trigonometry.- Y-Pieces and Twist Parameters.- The Collar Theorem.- Bers’ Constant and the Hairy Torus.- The Teichmüller Space.- The Spectrum of the Laplacian.- Small Eigenvalues.- Closed Geodesics and Huber’s Theorem.- Wolpert’s Theorem.- Sunada’s Theorem.- Examples of Isospectral Riemann Surfaces.- The Size of Isospectral Families.- Perturbations of the Laplacian in Teichmüller Space.

Geometry and Spectra of Compact Riemann Surfaces

Product form

£98.99

Includes FREE delivery

RRP £109.99 – you save £11.00 (10%)

Order before 4pm today for delivery by Mon 26 Jan 2026.

A Paperback by Peter Buser

Out of stock


    View other formats and editions of Geometry and Spectra of Compact Riemann Surfaces by Peter Buser

    Publisher: Birkhauser Boston
    Publication Date: 11/4/2010 12:00:00 AM
    ISBN13: 9780817649913, 978-0817649913
    ISBN10: 0817649913

    Description

    Book Synopsis
    Hyperbolic Structures.- Trigonometry.- Y-Pieces and Twist Parameters.- The Collar Theorem.- Bers' Constant and the Hairy Torus.- The Teichmüller Space.- The Spectrum of the Laplacian.- Small Eigenvalues.- Closed Geodesics and Huber's Theorem.- Wolpert's Theorem.- Sunada's Theorem.- Examples of Isospectral Riemann Surfaces.- The Size of Isospectral Families.- Perturbations of the Laplacian in Teichmüller Space.

    Trade Review

    From the reviews:

    "Anyone familiar with the author's hands-on approach to Riemann surfaces will be gratified by both the breadth and the depth of the topics considered here. The exposition is also extremely clear and thorough. Anyone not familiar with the author's approach is in for a real treat." —Mathematical Reviews

    “Originally published as Volume 106 in the series Progress in Mathematics, this version is a reprint of the classic monograph, 1992 edition, consisting of two parts. … An appendix is devoted to curves and isotopies. The book is a very useful reference for researches and also for graduate students interested in the geometry of compact Riemann surfaces of constant curvature -- 1 and their length and eigenvalue spectra.” (Liliana Răileanu, Zentralblatt MATH, Vol. 1239, 2012)

    “Geometry and Spectra of Compact Riemann Surfaces is a pleasure to read. There is a lot of motivation given, examples proliferate, propositions and theorems come equipped with clear proofs, and excellent drawings … . a fine piece of scholarship and a pedagogical treat.” (Michael Berg, The Mathematical Association of America, May, 2011)



    Table of Contents
    Hyperbolic Structures.- Trigonometry.- Y-Pieces and Twist Parameters.- The Collar Theorem.- Bers’ Constant and the Hairy Torus.- The Teichmüller Space.- The Spectrum of the Laplacian.- Small Eigenvalues.- Closed Geodesics and Huber’s Theorem.- Wolpert’s Theorem.- Sunada’s Theorem.- Examples of Isospectral Riemann Surfaces.- The Size of Isospectral Families.- Perturbations of the Laplacian in Teichmüller Space.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account