Description

Book Synopsis

This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare.

Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.




Table of Contents

Data sources.- Data at scale.- Standards in healthcare data.- Using FAIR data / data stewardship.- Privacy / deidentification.- Preparing your data.- Creating a predictive model.- Diving deeper into models.- Validation and Evaluation of reported models.- Clinical decision support systems.- Mobile app development.- Operational excellence.- Value Based Healthcare (Regulatory concerns).

Fundamentals of Clinical Data Science

Product form

£40.49

Includes FREE delivery

RRP £44.99 – you save £4.50 (10%)

Order before 4pm today for delivery by Fri 19 Dec 2025.

A Hardback by Pieter Kubben, Michel Dumontier, Andre Dekker

2 in stock


    View other formats and editions of Fundamentals of Clinical Data Science by Pieter Kubben

    Publisher: Springer International Publishing AG
    Publication Date: 07/01/2019
    ISBN13: 9783319997124, 978-3319997124
    ISBN10: 3319997122

    Description

    Book Synopsis

    This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare.

    Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.




    Table of Contents

    Data sources.- Data at scale.- Standards in healthcare data.- Using FAIR data / data stewardship.- Privacy / deidentification.- Preparing your data.- Creating a predictive model.- Diving deeper into models.- Validation and Evaluation of reported models.- Clinical decision support systems.- Mobile app development.- Operational excellence.- Value Based Healthcare (Regulatory concerns).

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account