Description

Book Synopsis
This text summarizes the core undergraduate physics curriculum together with the mathematics frequently encountered in engineering and physics calculations. The author emphasizes fundamental formulas and derivations and provides simple, coherent explanations of the underlying concepts.

Trade Review
This book is an excellent study guide for students, and a good reference book for working professionals who may need a convenient source for fundamental equations on various topics (IEEE Electrical Insulation Magazine 2016)

Table of Contents

1 Introduction 1

2 Problem Solving 3

2.1 Analysis 3

2.2 Test-Taking Techniques 4

2.2.1 Dimensional Analysis 5

3 Scientific Programming 6

3.1 Language Fundamentals 6

3.1.1 Octave Programming 7

4 Elementary Mathematics 12

4.1 Algebra 12

4.1.1 Equation Manipulation 12

4.1.2 Linear Equation Systems 13

4.1.3 Factoring 14

4.1.4 Inequalities 15

4.1.5 Sum Formulas 16

4.1.6 Binomial Theorem 17

4.2 Geometry 17

4.2.1 Angles 18

4.2.2 Triangles 18

4.2.3 Right Triangles 19

4.2.4 Polygons 20

4.2.5 Circles 20

4.3 Exponential, Logarithmic Functions, and Trigonometry 21

4.3.1 Exponential Functions 21

4.3.2 Inverse Functions and Logarithms 21

4.3.3 Hyperbolic Functions 22

4.3.4 Complex Numbers and Harmonic Functions 23

4.3.5 Inverse Harmonic and Hyperbolic Functions 25

4.3.6 Trigonometric Identities 26

4.4 Analytic Geometry 28

4.4.1 Lines and Planes 28

4.4.2 Conic Sections 29

4.4.3 Areas, Volumes, and Solid Angles 31

5 Vectors and Matrices 32

5.1 Matrices and Matrix Products 32

5.2 Equation Systems 34

5.3 Traces and Determinants 35

5.4 Vectors and Inner Products 38

5.5 Cross and Outer Products 40

5.6 Vector Identities 41

5.7 Rotations and Orthogonal Matrices 42

5.8 Groups and Matrix Generators 43

5.9 Eigenvalues and Eigenvectors 45

5.10 Similarity Transformations 48

6 Calculus of a Single Variable 50

6.1 Derivatives 50

6.2 Integrals 54

6.3 Series 60

7 Calculus of Several Variables 62

7.1 Partial Derivatives 62

7.2 Multidimensional Taylor Series and Extrema 66

7.3 Multiple Integration 67

7.4 Volumes and Surfaces of Revolution 69

7.5 Change of Variables and Jacobians 70

8 Calculus of Vector Functions 72

8.1 Generalized Coordinates 72

8.2 Vector Differential Operators 77

8.3 Vector Differential Identities 81

8.4 Gauss’s and Stokes’ Laws and Green’s Identities 82

8.5 Lagrange Multipliers 83

9 Probability Theory and Statistics 85

9.1 Random Variables, Probability Density, and Distributions 85

9.2 Mean, Variance, and Standard Deviation 86

9.3 Variable Transformations 86

9.4 Moments and Moment-Generating Function 86

9.5 Multivariate Probability Distributions, Covariance, and Correlation 87

9.6 Gaussian, Binomial, and Poisson Distributions 87

9.7 Least Squares Regression 91

9.8 Error Propagation 92

9.9 Numerical Models 93

10 Complex Analysis 94

10.1 Functions of a Complex Variable 94

10.2 Derivatives, Analyticity, and the Cauchy–Riemann Relations 95

10.3 Conformal Mapping 96

10.4 Cauchy’s Theorem and Taylor and Laurent Series 97

10.5 Residue Theorem 101

10.6 Dispersion Relations 105

10.7 Method of Steepest Decent 106

11 Differential Equations 108

11.1 Linearity, Superposition, and Initial and Boundary Values 108

11.2 Numerical Solutions 109

11.3 First-Order Differential Equations 112

11.4 Wronskian 114

11.5 Factorization 115

11.6 Method of Undetermined Coefficients 115

11.7 Variation of Parameters 116

11.8 Reduction of Order 118

11.9 Series Solution and Method of Frobenius 118

11.10 Systems of Equations, Eigenvalues, and Eigenvectors 119

12 Transform Theory 122

12.1 Eigenfunctions and Eigenvectors 122

12.2 Sturm–Liouville Theory 123

12.3 Fourier Series 125

12.4 Fourier Transforms 127

12.5 Delta Functions 128

12.6 Green’s Functions 131

12.7 Laplace Transforms 135

12.8 z-Transforms 137

13 Partial Differential Equations and Special Functions 138

13.1 Separation of Variables and Rectangular Coordinates 138

13.2 Legendre Polynomials 145

13.3 Spherical Harmonics 150

13.4 Bessel Functions 156

13.5 Spherical Bessel Functions 162

14 Integral Equations and the Calculus of Variations 166

14.1 Volterra and Fredholm Equations 166

14.2 Calculus of Variations the Euler-Lagrange Equation 168

15 Particle Mechanics 170

15.1 Newton’s Laws 170

15.2 Forces 171

15.3 Numerical Methods 173

15.4 Work and Energy 174

15.5 Lagrange Equations 176

15.6 Three-Dimensional Particle Motion 180

15.7 Impulse 181

15.8 Oscillatory Motion 181

15.9 Rotational Motion About a Fixed Axis 185

15.10 Torque and Angular Momentum 187

15.11 Motion in Accelerating Reference Systems 188

15.12 Gravitational Forces and Fields 189

15.13 Celestial Mechanics 191

15.14 Dynamics of Systems of Particles 193

15.15 Two-Particle Collisions and Scattering 197

15.16 Mechanics of Rigid Bodies 199

15.17 Hamilton’s Equation and Kinematics 206

16 Fluid Mechanics 210

16.1 Continuity Equation 210

16.2 Euler’s Equation 212

16.3 Bernoulli’s Equation 213

17 Special Relativity 215

17.1 Four-Vectors and Lorentz Transformation 215

17.2 Length Contraction, Time Dilation, and Simultaneity 217

17.3 Covariant Notation 219

17.4 Casuality and Minkowski Diagrams 221

17.5 Velocity Addition and Doppler Shift 222

17.6 Energy and Momentum 223

18 Electromagnetism 227

18.1 Maxwell’s Equations 227

18.2 Gauss’s Law 233

18.3 Electric Potential 235

18.4 Current and Resistivity 238

18.5 Dipoles and Polarization 241

18.6 Boundary Conditions and Green’s Functions 244

18.7 Multipole Expansion 248

18.8 Relativistic Formulation of Electromagnetism, Gauge Transformations, and Magnetic Fields 249

18.9 Magnetostatics 256

18.10 Magnetic Dipoles 259

18.11 Magnetization 260

18.12 Induction and Faraday’s Law 262

18.13 Circuit Theory and Kirchoff’s Laws 266

18.14 Conservation Laws and the Stress Tensor 270

18.15 Lienard–Wiechert Potentials 274

18.16 Radiation from Moving Charges 275

19 Wave Motion 282

19.1 Wave Equation 282

19.2 Propagation of Waves 284

19.3 Planar Electromagnetic Waves 286

19.4 Polarization 287

19.5 Superposition and Interference 288

19.6 Multipole Expansion for Radiating Fields 292

19.7 Phase and Group Velocity 295

19.8 Minimum Time Principle and Ray Optics 296

19.9 Refraction and Snell’s Law 297

19.10 Lenses 299

19.11 Mechanical Reflection 301

19.12 Doppler Effect and Shock Waves 302

19.13 Waves in Periodic Media 303

19.14 Conducting Media 304

19.15 Dielectric Media 306

19.16 Reflection and Transmission 307

19.17 Diffraction 311

19.18 Waveguides and Cavities 313

20 Quantum Mechanics 318

20.1 Fundamental Principles 318

20.2 Particle–Wave Duality 319

20.3 Interference of Quantum Waves 320

20.4 Schrödinger Equation 321

20.5 Particle Flux and Reflection 322

20.6 Wave Packet Propagation 324

20.7 Numerical Solutions 326

20.8 Quantum Mechanical Operators 328

20.9 Heisenberg Uncertainty Relation 331

20.10 Hilbert Space Representation 334

20.11 Square Well and Delta Function Potentials 336

20.12 WKB Method 339

20.13 Harmonic Oscillators 342

20.14 Heisenberg Representation 343

20.15 Translation Operators 344

20.16 Perturbation Theory 345

20.17 Adiabatic Theorem 351

21 Atomic Physics 353

21.1 Properties of Fermions 353

21.2 Bohr Model 354

21.3 Atomic Spectra and X-Rays 356

21.4 Atomic Units 356

21.5 Angular Momentum 357

21.6 Spin 358

21.7 Interaction of Spins 359

21.8 Hydrogenic Atoms 360

21.9 Atomic Structure 362

21.10 Spin–Orbit Coupling 362

21.11 Atoms in Static Electric and Magnetic Fields 364

21.12 Helium Atom and the H+2 Molecule 368

21.13 Interaction of Atoms with Radiation 371

21.14 Selection Rules 373

21.15 Scattering Theory 374

22 Nuclear and Particle Physics 379

22.1 Nuclear Properties 379

22.2 Radioactive Decay 381

22.3 Nuclear Reactions 382

22.4 Fission and Fusion 383

22.5 Fundamental Properties of Elementary Particles 383

23 Thermodynamics and Statistical Mechanics 386

23.1 Entropy 386

23.2 Ensembles 388

23.3 Statistics 391

23.4 Partition Functions 393

23.5 Density of States 396

23.6 Temperature and Energy 397

23.7 Phonons and Photons 400

23.8 The Laws of Thermodynamics 401

23.9 The Legendre Transformation and Thermodynamic Quantities 403

23.10 Expansion of Gases 407

23.11 Heat Engines and the Carnot Cycle 409

23.12 Thermodynamic Fluctuations 410

23.13 Phase Transformations 412

23.14 The Chemical Potential and Chemical Reactions 413

23.15 The Fermi Gas 414

23.16 Bose–Einstein Condensation 416

23.17 Physical Kinetics and Transport Theory 417

24 Condensed Matter Physics 422

24.1 Crystal Structure 422

24.2 X-Ray Diffraction 423

24.3 Thermal Properties 424

24.4 Electron Theory of Metals 425

24.5 Superconductors 426

24.6 Semiconductors 427

25 Laboratory Methods 430

25.1 Interaction of Particles with Matter 430

25.2 Radiation Detection and Counting Statistics 431

25.3 Lasers 432

Index 434

Fundamental Math and Physics for Scientists and

Product form

£48.56

Includes FREE delivery

RRP £53.95 – you save £5.39 (9%)

Order before 4pm today for delivery by Sat 20 Dec 2025.

A Paperback / softback by David Yevick, Hannah Yevick

Out of stock


    View other formats and editions of Fundamental Math and Physics for Scientists and by David Yevick

    Publisher: John Wiley & Sons Inc
    Publication Date: 19/12/2014
    ISBN13: 9780470407844, 978-0470407844
    ISBN10: 0470407840

    Description

    Book Synopsis
    This text summarizes the core undergraduate physics curriculum together with the mathematics frequently encountered in engineering and physics calculations. The author emphasizes fundamental formulas and derivations and provides simple, coherent explanations of the underlying concepts.

    Trade Review
    This book is an excellent study guide for students, and a good reference book for working professionals who may need a convenient source for fundamental equations on various topics (IEEE Electrical Insulation Magazine 2016)

    Table of Contents

    1 Introduction 1

    2 Problem Solving 3

    2.1 Analysis 3

    2.2 Test-Taking Techniques 4

    2.2.1 Dimensional Analysis 5

    3 Scientific Programming 6

    3.1 Language Fundamentals 6

    3.1.1 Octave Programming 7

    4 Elementary Mathematics 12

    4.1 Algebra 12

    4.1.1 Equation Manipulation 12

    4.1.2 Linear Equation Systems 13

    4.1.3 Factoring 14

    4.1.4 Inequalities 15

    4.1.5 Sum Formulas 16

    4.1.6 Binomial Theorem 17

    4.2 Geometry 17

    4.2.1 Angles 18

    4.2.2 Triangles 18

    4.2.3 Right Triangles 19

    4.2.4 Polygons 20

    4.2.5 Circles 20

    4.3 Exponential, Logarithmic Functions, and Trigonometry 21

    4.3.1 Exponential Functions 21

    4.3.2 Inverse Functions and Logarithms 21

    4.3.3 Hyperbolic Functions 22

    4.3.4 Complex Numbers and Harmonic Functions 23

    4.3.5 Inverse Harmonic and Hyperbolic Functions 25

    4.3.6 Trigonometric Identities 26

    4.4 Analytic Geometry 28

    4.4.1 Lines and Planes 28

    4.4.2 Conic Sections 29

    4.4.3 Areas, Volumes, and Solid Angles 31

    5 Vectors and Matrices 32

    5.1 Matrices and Matrix Products 32

    5.2 Equation Systems 34

    5.3 Traces and Determinants 35

    5.4 Vectors and Inner Products 38

    5.5 Cross and Outer Products 40

    5.6 Vector Identities 41

    5.7 Rotations and Orthogonal Matrices 42

    5.8 Groups and Matrix Generators 43

    5.9 Eigenvalues and Eigenvectors 45

    5.10 Similarity Transformations 48

    6 Calculus of a Single Variable 50

    6.1 Derivatives 50

    6.2 Integrals 54

    6.3 Series 60

    7 Calculus of Several Variables 62

    7.1 Partial Derivatives 62

    7.2 Multidimensional Taylor Series and Extrema 66

    7.3 Multiple Integration 67

    7.4 Volumes and Surfaces of Revolution 69

    7.5 Change of Variables and Jacobians 70

    8 Calculus of Vector Functions 72

    8.1 Generalized Coordinates 72

    8.2 Vector Differential Operators 77

    8.3 Vector Differential Identities 81

    8.4 Gauss’s and Stokes’ Laws and Green’s Identities 82

    8.5 Lagrange Multipliers 83

    9 Probability Theory and Statistics 85

    9.1 Random Variables, Probability Density, and Distributions 85

    9.2 Mean, Variance, and Standard Deviation 86

    9.3 Variable Transformations 86

    9.4 Moments and Moment-Generating Function 86

    9.5 Multivariate Probability Distributions, Covariance, and Correlation 87

    9.6 Gaussian, Binomial, and Poisson Distributions 87

    9.7 Least Squares Regression 91

    9.8 Error Propagation 92

    9.9 Numerical Models 93

    10 Complex Analysis 94

    10.1 Functions of a Complex Variable 94

    10.2 Derivatives, Analyticity, and the Cauchy–Riemann Relations 95

    10.3 Conformal Mapping 96

    10.4 Cauchy’s Theorem and Taylor and Laurent Series 97

    10.5 Residue Theorem 101

    10.6 Dispersion Relations 105

    10.7 Method of Steepest Decent 106

    11 Differential Equations 108

    11.1 Linearity, Superposition, and Initial and Boundary Values 108

    11.2 Numerical Solutions 109

    11.3 First-Order Differential Equations 112

    11.4 Wronskian 114

    11.5 Factorization 115

    11.6 Method of Undetermined Coefficients 115

    11.7 Variation of Parameters 116

    11.8 Reduction of Order 118

    11.9 Series Solution and Method of Frobenius 118

    11.10 Systems of Equations, Eigenvalues, and Eigenvectors 119

    12 Transform Theory 122

    12.1 Eigenfunctions and Eigenvectors 122

    12.2 Sturm–Liouville Theory 123

    12.3 Fourier Series 125

    12.4 Fourier Transforms 127

    12.5 Delta Functions 128

    12.6 Green’s Functions 131

    12.7 Laplace Transforms 135

    12.8 z-Transforms 137

    13 Partial Differential Equations and Special Functions 138

    13.1 Separation of Variables and Rectangular Coordinates 138

    13.2 Legendre Polynomials 145

    13.3 Spherical Harmonics 150

    13.4 Bessel Functions 156

    13.5 Spherical Bessel Functions 162

    14 Integral Equations and the Calculus of Variations 166

    14.1 Volterra and Fredholm Equations 166

    14.2 Calculus of Variations the Euler-Lagrange Equation 168

    15 Particle Mechanics 170

    15.1 Newton’s Laws 170

    15.2 Forces 171

    15.3 Numerical Methods 173

    15.4 Work and Energy 174

    15.5 Lagrange Equations 176

    15.6 Three-Dimensional Particle Motion 180

    15.7 Impulse 181

    15.8 Oscillatory Motion 181

    15.9 Rotational Motion About a Fixed Axis 185

    15.10 Torque and Angular Momentum 187

    15.11 Motion in Accelerating Reference Systems 188

    15.12 Gravitational Forces and Fields 189

    15.13 Celestial Mechanics 191

    15.14 Dynamics of Systems of Particles 193

    15.15 Two-Particle Collisions and Scattering 197

    15.16 Mechanics of Rigid Bodies 199

    15.17 Hamilton’s Equation and Kinematics 206

    16 Fluid Mechanics 210

    16.1 Continuity Equation 210

    16.2 Euler’s Equation 212

    16.3 Bernoulli’s Equation 213

    17 Special Relativity 215

    17.1 Four-Vectors and Lorentz Transformation 215

    17.2 Length Contraction, Time Dilation, and Simultaneity 217

    17.3 Covariant Notation 219

    17.4 Casuality and Minkowski Diagrams 221

    17.5 Velocity Addition and Doppler Shift 222

    17.6 Energy and Momentum 223

    18 Electromagnetism 227

    18.1 Maxwell’s Equations 227

    18.2 Gauss’s Law 233

    18.3 Electric Potential 235

    18.4 Current and Resistivity 238

    18.5 Dipoles and Polarization 241

    18.6 Boundary Conditions and Green’s Functions 244

    18.7 Multipole Expansion 248

    18.8 Relativistic Formulation of Electromagnetism, Gauge Transformations, and Magnetic Fields 249

    18.9 Magnetostatics 256

    18.10 Magnetic Dipoles 259

    18.11 Magnetization 260

    18.12 Induction and Faraday’s Law 262

    18.13 Circuit Theory and Kirchoff’s Laws 266

    18.14 Conservation Laws and the Stress Tensor 270

    18.15 Lienard–Wiechert Potentials 274

    18.16 Radiation from Moving Charges 275

    19 Wave Motion 282

    19.1 Wave Equation 282

    19.2 Propagation of Waves 284

    19.3 Planar Electromagnetic Waves 286

    19.4 Polarization 287

    19.5 Superposition and Interference 288

    19.6 Multipole Expansion for Radiating Fields 292

    19.7 Phase and Group Velocity 295

    19.8 Minimum Time Principle and Ray Optics 296

    19.9 Refraction and Snell’s Law 297

    19.10 Lenses 299

    19.11 Mechanical Reflection 301

    19.12 Doppler Effect and Shock Waves 302

    19.13 Waves in Periodic Media 303

    19.14 Conducting Media 304

    19.15 Dielectric Media 306

    19.16 Reflection and Transmission 307

    19.17 Diffraction 311

    19.18 Waveguides and Cavities 313

    20 Quantum Mechanics 318

    20.1 Fundamental Principles 318

    20.2 Particle–Wave Duality 319

    20.3 Interference of Quantum Waves 320

    20.4 Schrödinger Equation 321

    20.5 Particle Flux and Reflection 322

    20.6 Wave Packet Propagation 324

    20.7 Numerical Solutions 326

    20.8 Quantum Mechanical Operators 328

    20.9 Heisenberg Uncertainty Relation 331

    20.10 Hilbert Space Representation 334

    20.11 Square Well and Delta Function Potentials 336

    20.12 WKB Method 339

    20.13 Harmonic Oscillators 342

    20.14 Heisenberg Representation 343

    20.15 Translation Operators 344

    20.16 Perturbation Theory 345

    20.17 Adiabatic Theorem 351

    21 Atomic Physics 353

    21.1 Properties of Fermions 353

    21.2 Bohr Model 354

    21.3 Atomic Spectra and X-Rays 356

    21.4 Atomic Units 356

    21.5 Angular Momentum 357

    21.6 Spin 358

    21.7 Interaction of Spins 359

    21.8 Hydrogenic Atoms 360

    21.9 Atomic Structure 362

    21.10 Spin–Orbit Coupling 362

    21.11 Atoms in Static Electric and Magnetic Fields 364

    21.12 Helium Atom and the H+2 Molecule 368

    21.13 Interaction of Atoms with Radiation 371

    21.14 Selection Rules 373

    21.15 Scattering Theory 374

    22 Nuclear and Particle Physics 379

    22.1 Nuclear Properties 379

    22.2 Radioactive Decay 381

    22.3 Nuclear Reactions 382

    22.4 Fission and Fusion 383

    22.5 Fundamental Properties of Elementary Particles 383

    23 Thermodynamics and Statistical Mechanics 386

    23.1 Entropy 386

    23.2 Ensembles 388

    23.3 Statistics 391

    23.4 Partition Functions 393

    23.5 Density of States 396

    23.6 Temperature and Energy 397

    23.7 Phonons and Photons 400

    23.8 The Laws of Thermodynamics 401

    23.9 The Legendre Transformation and Thermodynamic Quantities 403

    23.10 Expansion of Gases 407

    23.11 Heat Engines and the Carnot Cycle 409

    23.12 Thermodynamic Fluctuations 410

    23.13 Phase Transformations 412

    23.14 The Chemical Potential and Chemical Reactions 413

    23.15 The Fermi Gas 414

    23.16 Bose–Einstein Condensation 416

    23.17 Physical Kinetics and Transport Theory 417

    24 Condensed Matter Physics 422

    24.1 Crystal Structure 422

    24.2 X-Ray Diffraction 423

    24.3 Thermal Properties 424

    24.4 Electron Theory of Metals 425

    24.5 Superconductors 426

    24.6 Semiconductors 427

    25 Laboratory Methods 430

    25.1 Interaction of Particles with Matter 430

    25.2 Radiation Detection and Counting Statistics 431

    25.3 Lasers 432

    Index 434

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account