Description
Book SynopsisThis book provides an overview of many interesting properties of natural numbers, demonstrating their applications in areas such as cryptography, geometry, astronomy, mechanics, computer science, and recreational mathematics. In particular, it presents the main ideas of error-detecting and error-correcting codes, digital signatures, hashing functions, generators of pseudorandom numbers, and the RSA method based on large prime numbers. A diverse array of topics is covered, from the properties and applications of prime numbers, some surprising connections between number theory and graph theory, pseudoprimes, Fibonacci and Lucas numbers, and the construction of Magic and Latin squares, to the mathematics behind Prague’s astronomical clock. Introducing a general mathematical audience to some of the basic ideas and algebraic methods connected with various types of natural numbers, the book will provide invaluable reading for amateurs and professionals alike.
Trade Review“This is a nicely written book that can be read with profit by undergraduates with a background in elementary number theory, and it may serve as bedtime reading for the experts.” (Franz Lemmermeyer, zbMATH 1486.11001, 2022)
“It also has more applications than is usual in either kind of book. Apart from that it is very conventional and has the theorems and proofs that you would expect. … The book does cover a number of newer discoveries … .” (Allen Stenger, MAA Reviews, December 27, 2021)
Table of ContentsForeword.- 1. Divisibility and Congruence.- 2. Prime and Composite Numbers.- 3. Properties of Prime Numbers.- 4. Special Types of Primes.- 5. On a Connection of Number Theory with Graph Theory.- 6. Pseudoprimes.- 7. Fibonacci and Lucas Numbers.- 8. Further Special Types of Integers.- 9. Magic and Latin Squares.- 10. The Mathematics Behind Prague's Horologe.- 11. Applications of Primes.- 12. Further Applications of Number Theory.- Tables.- References.