Description

Book Synopsis

This book aims to provide a friendly introduction to non-commutative geometry. It studies index theory from a classical differential geometry perspective up to the point where classical differential geometry methods become insufficient. It then presents non-commutative geometry as a natural continuation of classical differential geometry. It thereby aims to provide a natural link between classical differential geometry and non-commutative geometry. The book shows that the index formula is a topological statement, and ends with non-commutative topology.




Trade Review

“The present book is well written. It is very useful to researchers in differential geometry who are interested in non-commutative geometry. It provides motivations for tudying non commutative geometry.” (Ion Mihai, zbMATH 1458.58001, 2021)



Table of Contents
1. Part I Spaces, bundles and characteristic classes in differential geometry.- 2. Part II Non-commutative differential geometry.- 3. Part III Index Theorems.- 4. Part IV Prospects in Index Theory. Part V.- 5. Non-commutative topology.

From Differential Geometry to Non-commutative

Product form

£104.49

Includes FREE delivery

RRP £109.99 – you save £5.50 (5%)

Order before 4pm tomorrow for delivery by Sat 20 Dec 2025.

A Paperback / softback by Neculai S. Teleman

15 in stock


    View other formats and editions of From Differential Geometry to Non-commutative by Neculai S. Teleman

    Publisher: Springer Nature Switzerland AG
    Publication Date: 18/11/2020
    ISBN13: 9783030284350, 978-3030284350
    ISBN10: 3030284352

    Description

    Book Synopsis

    This book aims to provide a friendly introduction to non-commutative geometry. It studies index theory from a classical differential geometry perspective up to the point where classical differential geometry methods become insufficient. It then presents non-commutative geometry as a natural continuation of classical differential geometry. It thereby aims to provide a natural link between classical differential geometry and non-commutative geometry. The book shows that the index formula is a topological statement, and ends with non-commutative topology.




    Trade Review

    “The present book is well written. It is very useful to researchers in differential geometry who are interested in non-commutative geometry. It provides motivations for tudying non commutative geometry.” (Ion Mihai, zbMATH 1458.58001, 2021)



    Table of Contents
    1. Part I Spaces, bundles and characteristic classes in differential geometry.- 2. Part II Non-commutative differential geometry.- 3. Part III Index Theorems.- 4. Part IV Prospects in Index Theory. Part V.- 5. Non-commutative topology.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account