Description

Book Synopsis

This book provides a comprehensive discussion and new insights about linear optimization of content metrics to improve the automatic Evaluation of Text Summaries (ETS). The reader is first introduced to the background and fundamentals of the ETS. Afterward, state-of-the-art evaluation methods that require or do not require human references are described. Based on how linear optimization has improved other natural language processing tasks, we developed a new methodology based on genetic algorithms that optimize content metrics linearly. Under this optimization, we propose SECO-SEVA as an automatic evaluation metric available for research purposes. Finally, the text finishes with a consideration of directions in which automatic evaluation could be improved in the future. The information provided in this book is self-contained. Therefore, the reader does not require an exhaustive background in this area. Moreover, we consider this book the first one that deals with the ETS in depth.



Table of Contents
Introduction.- Background of the ETS.- Fundamentals of the ETS.- State-of-the-art Automatic Evaluation Methods.- A Novel Methodology based on Linear Optimization of Metrics for the ETS.- Experimenting with Linear Optimization of Metrics for Single-document Summarization Evaluation.- Experimenting with Linear Optimization of Metrics for Multi-document Summarization Evaluation.- Conclusions and future considerations for the ETS.

Evaluation of Text Summaries Based on Linear

Product form

£107.99

Includes FREE delivery

RRP £119.99 – you save £12.00 (10%)

Order before 4pm today for delivery by Mon 26 Jan 2026.

A Hardback by Jonathan Rojas-Simon, Yulia Ledeneva, Rene Arnulfo Garcia-Hernandez

5 in stock


    View other formats and editions of Evaluation of Text Summaries Based on Linear by Jonathan Rojas-Simon

    Publisher: Springer International Publishing AG
    Publication Date: 19/08/2022
    ISBN13: 9783031072130, 978-3031072130
    ISBN10: 3031072138

    Description

    Book Synopsis

    This book provides a comprehensive discussion and new insights about linear optimization of content metrics to improve the automatic Evaluation of Text Summaries (ETS). The reader is first introduced to the background and fundamentals of the ETS. Afterward, state-of-the-art evaluation methods that require or do not require human references are described. Based on how linear optimization has improved other natural language processing tasks, we developed a new methodology based on genetic algorithms that optimize content metrics linearly. Under this optimization, we propose SECO-SEVA as an automatic evaluation metric available for research purposes. Finally, the text finishes with a consideration of directions in which automatic evaluation could be improved in the future. The information provided in this book is self-contained. Therefore, the reader does not require an exhaustive background in this area. Moreover, we consider this book the first one that deals with the ETS in depth.



    Table of Contents
    Introduction.- Background of the ETS.- Fundamentals of the ETS.- State-of-the-art Automatic Evaluation Methods.- A Novel Methodology based on Linear Optimization of Metrics for the ETS.- Experimenting with Linear Optimization of Metrics for Single-document Summarization Evaluation.- Experimenting with Linear Optimization of Metrics for Multi-document Summarization Evaluation.- Conclusions and future considerations for the ETS.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account