Description

Book Synopsis
The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns.Electricity consumption in the US doubled from 2000 to 2005. From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems. These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to ''greener'' distributed computing systems. This book brings together a group of outstanding researchers that investigate the different facets of green and energy efficient distributed computing.

Key features:

  • One of the first books of its kind
  • Features latest research findings on emerging topics by well-known scientists
  • Valuable research for grad students, postdocs, and researchers
  • Research will greatly feed into other technologies and applicatio

    Table of Contents
    PREFACE xxix

    ACKNOWLEDGMENTS xxxi

    CONTRIBUTORS xxxiii

    1 POWER ALLOCATION AND TASK SCHEDULING ON MULTIPROCESSOR COMPUTERS WITH ENERGY AND TIME CONSTRAINTS 1
    Keqin Li

    1.1 Introduction 1

    1.1.1 Energy Consumption 1

    1.1.2 Power Reduction 2

    1.1.3 Dynamic Power Management 3

    1.1.4 Task Scheduling with Energy and Time Constraints 4

    1.1.5 Chapter Outline 5

    1.2 Preliminaries 5

    1.2.1 Power Consumption Model 5

    1.2.2 Problem Definitions 6

    1.2.3 Task Models 7

    1.2.4 Processor Models 8

    1.2.5 Scheduling Models 9

    1.2.6 Problem Decomposition 9

    1.2.7 Types of Algorithms 10

    1.3 Problem Analysis 10

    1.3.1 Schedule Length Minimization 10

    1.3.1.1 Uniprocessor computers 10

    1.3.1.2 Multiprocessor computers 11

    1.3.2 Energy Consumption Minimization 12

    1.3.2.1 Uniprocessor computers 12

    1.3.2.2 Multiprocessor computers 13

    1.3.3 Strong NP-Hardness 14

    1.3.4 Lower Bounds 14

    1.3.5 Energy-Delay Trade-off 15

    1.4 Pre-Power-Determination Algorithms 16

    1.4.1 Overview 16

    1.4.2 Performance Measures 17

    1.4.3 Equal-Time Algorithms and Analysis 18

    1.4.3.1 Schedule length minimization 18

    1.4.3.2 Energy consumption minimization 19

    1.4.4 Equal-Energy Algorithms and Analysis 19

    1.4.4.1 Schedule length minimization 19

    1.4.4.2 Energy consumption minimization 21

    1.4.5 Equal-Speed Algorithms and Analysis 22

    1.4.5.1 Schedule length minimization 22

    1.4.5.2 Energy consumption minimization 23

    1.4.6 Numerical Data 24

    1.4.7 Simulation Results 25

    1.5 Post-Power-Determination Algorithms 28

    1.5.1 Overview 28

    1.5.2 Analysis of List Scheduling Algorithms 29

    1.5.2.1 Analysis of algorithm LS 29

    1.5.2.2 Analysis of algorithm LRF 30

    1.5.3 Application to Schedule Length Minimization 30

    1.5.4 Application to Energy Consumption Minimization 31

    1.5.5 Numerical Data 32

    1.5.6 Simulation Results 32

    1.6 Summary and Further Research 33

    References 34

    2 POWER-AWARE HIGH PERFORMANCE COMPUTING 39
    Rong Ge and Kirk W. Cameron

    2.1 Introduction 39

    2.2 Background 41

    2.2.1 Current Hardware Technology and Power Consumption 41

    2.2.1.1 Processor power 41

    2.2.1.2 Memory subsystem power 42

    2.2.2 Performance 43

    2.2.3 Energy Efficiency 44

    2.3 Related Work 45

    2.3.1 Power Profiling 45

    2.3.1.1 Simulator-based power estimation 45

    2.3.1.2 Direct measurements 46

    2.3.1.3 Event-based estimation 46

    2.3.2 Performance Scalability on Power-Aware Systems 46

    2.3.3 Adaptive Power Allocation for Energy-Efficient Computing 47

    2.4 PowerPack: Fine-Grain Energy Profiling of HPC Applications 48

    2.4.1 Design and Implementation of PowerPack 48

    2.4.1.1 Overview 48

    2.4.1.2 Fine-grain systematic power measurement 50

    2.4.1.3 Automatic power profiling and code synchronization 51

    2.4.2 Power Profiles of HPC Applications and Systems 53

    2.4.2.1 Power distribution over components 53

    2.4.2.2 Power dynamics of applications 54

    2.4.2.3 Power bounds on HPC systems 55

    2.4.2.4 Power versus dynamic voltage and frequency scaling 57

    2.5 Power-Aware Speedup Model 59

    2.5.1 Power-Aware Speedup 59

    2.5.1.1 Sequential execution time for a single workload T1(w, f ) 60

    2.5.1.2 Sequential execution time for an ON-chip/OFF-chip workload 60

    2.5.1.3 Parallel execution time on N processors for an ON-/OFF-chip workload with DOP = i 61

    2.5.1.4 Power-aware speedup for DOP and ON-/OFF-chip workloads 62

    2.5.2 Model Parametrization and Validation 63

    2.5.2.1 Coarse-grain parametrization and validation 64

    2.5.2.2 Fine-grain parametrization and validation 66

    2.6 Model Usages 69

    2.6.1 Identification of Optimal System Configurations 70

    2.6.2 PAS-Directed Energy-Driven Runtime Frequency Scaling 71

    2.7 Conclusion 73

    References 75

    3 ENERGY EFFICIENCY IN HPC SYSTEMS 81
    Ivan Rodero and Manish Parashar

    3.1 Introduction 81

    3.2 Background and Related Work 83

    3.2.1 CPU Power Management 83

    3.2.1.1 OS-level CPU power management 83

    3.2.1.2 Workload-level CPU power management 84

    3.2.1.3 Cluster-level CPU power management 84

    3.2.2 Component-Based Power Management 85

    3.2.2.1 Memory subsystem 85

    3.2.2.2 Storage subsystem 86

    3.2.3 Thermal-Conscious Power Management 87

    3.2.4 Power Management in Virtualized Datacenters 87

    3.3 Proactive, Component-Based Power Management 88

    3.3.1 Job Allocation Policies 88

    3.3.2 Workload Profiling 90

    3.4 Quantifying Energy Saving Possibilities 91

    3.4.1 Methodology 92

    3.4.2 Component-Level Power Requirements 92

    3.4.3 Energy Savings 94

    3.5 Evaluation of the Proposed Strategies 95

    3.5.1 Methodology 96

    3.5.2 Workloads 96

    3.5.3 Metrics 97

    3.6 Results 97

    3.7 Concluding Remarks 102

    3.8 Summary 103

    References 104

    4 A STOCHASTIC FRAMEWORK FOR HIERARCHICAL SYSTEM-LEVEL POWER MANAGEMENT 109
    Peng Rong and Massoud Pedram

    4.1 Introduction 109

    4.2 Related Work 111

    4.3 A Hierarchical DPM Architecture 113

    4.4 Modeling 114

    4.4.1 Model of the Application Pool 114

    4.4.2 Model of the Service Flow Control 118

    4.4.3 Model of the Simulated Service Provider 119

    4.4.4 Modeling Dependencies between SPs 120

    4.5 Policy Optimization 122

    4.5.1 Mathematical Formulation 122

    4.5.2 Optimal Time-Out Policy for Local Power Manager 123

    4.6 Experimental Results 125

    4.7 Conclusion 130

    References 130

    5 ENERGY-EFFICIENT RESERVATION INFRASTRUCTURE FOR GRIDS, CLOUDS, AND NETWORKS 133
    Anne-Ce´ cile Orgerie and Laurent Lefe` vre

    5.1 Introduction 133

    5.2 Related Works 134

    5.2.1 Server and Data Center Power Management 135

    5.2.2 Node Optimizations 135

    5.2.3 Virtualization to Improve Energy Efficiency 136

    5.2.4 Energy Awareness in Wired Networking Equipment 136

    5.2.5 Synthesis 137

    5.3 ERIDIS: Energy-Efficient Reservation Infrastructure for Large-Scale Distributed Systems 138

    5.3.1 ERIDIS Architecture 138

    5.3.2 Management of the Resource Reservations 141

    5.3.3 Resource Management and On/Off Algorithms 145

    5.3.4 Energy-Consumption Estimates 146

    5.3.5 Prediction Algorithms 146

    5.4 EARI: Energy-Aware Reservation Infrastructure for Data Centers and Grids 147

    5.4.1 EARI’s Architecture 147

    5.4.2 Validation of EARI on Experimental Grid Traces 147

    5.5 GOC: Green Open Cloud 149

    5.5.1 GOC’s Resource Manager Architecture 150

    5.5.2 Validation of the GOC Framework 152

    5.6 HERMES: High Level Energy-Aware Model for Bandwidth Reservation in End-To-End Networks 152

    5.6.1 HERMES’ Architecture 154

    5.6.2 The Reservation Process of HERMES 155

    5.6.3 Discussion 157

    5.7 Summary 158

    References 158

    6 ENERGY-EFFICIENT JOB PLACEMENT ON CLUSTERS, GRIDS, AND CLOUDS 163
    Damien Borgetto, Henri Casanova, Georges Da Costa, and Jean-Marc Pierson

    6.1 Problem and Motivation 163

    6.1.1 Context 163

    6.1.2 Chapter Roadmap 164

    6.2 Energy-Aware Infrastructures 164

    6.2.1 Buildings 165

    6.2.2 Context-Aware Buildings 165

    6.2.3 Cooling 166

    6.3 Current Resource Management Practices 167

    6.3.1 Widely Used Resource Management Systems 167

    6.3.2 Job Requirement Description 169

    6.4 Scientific and Technical Challenges 170

    6.4.1 Theoretical Difficulties 170

    6.4.2 Technical Difficulties 170

    6.4.3 Controlling and Tuning Jobs 171

    6.5 Energy-Aware Job Placement Algorithms 172

    6.5.1 State of the Art 172

    6.5.2 Detailing One Approach 174

    6.6 Discussion 180

    6.6.1 Open Issues and Opportunities 180

    6.6.2 Obstacles for Adoption in Production 182

    6.7 Conclusion 183

    References 184

    7 COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENT SCHEDULING ALGORITHMS FOR COMPUTATIONAL GRIDS 189
    Peder Lindberg, James Leingang, Daniel Lysaker, Kashif Bilal, Samee Ullah Khan, Pascal Bouvry, Nasir Ghani, Nasro Min-Allah, and Juan Li

    7.1 Introduction 189

    7.2 Problem Formulation 191

    7.2.1 The System Model 191

    7.2.1.1 PEs 191

    7.2.1.2 DVS 191

    7.2.1.3 Tasks 192

    7.2.1.4 Preliminaries 192

    7.2.2 Formulating the Energy-Makespan Minimization Problem 192

    7.3 Proposed Algorithms 193

    7.3.1 Greedy Heuristics 194

    7.3.1.1 Greedy heuristic scheduling algorithm 196

    7.3.1.2 Greedy-min 197

    7.3.1.3 Greedy-deadline 198

    7.3.1.4 Greedy-max 198

    7.3.1.5 MaxMin 199

    7.3.1.6 ObFun 199

    7.3.1.7 MinMin StdDev 202

    7.3.1.8 MinMax StdDev 202

    7.4 Simulations, Results, and Discussion 203

    7.4.1 Workload 203

    7.4.2 Comparative Results 204

    7.4.2.1 Small-size problems 204

    7.4.2.2 Large-size problems 206

    7.5 Related Works 211

    7.6 Conclusion 211

    References 212

    8 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING 215
    Josep LL. Berral, In˜ igo Goiri, Ramon Nou, Ferran Julia` , Josep O. Fito´ , Jordi Guitart, Ricard Gavalda´ , and Jordi Torres

    8.1 Introduction 215

    8.1.1 Energetic Impact of the Cloud 216

    8.1.2 An Intelligent Way to Manage Data Centers 216

    8.1.3 Current Autonomic Computing Techniques 217

    8.1.4 Power-Aware Autonomic Computing 217

    8.1.5 State of the Art and Case Study 218

    8.2 Intelligent Self-Management 218

    8.2.1 Classical AI Approaches 219

    8.2.1.1 Heuristic algorithms 219

    8.2.1.2 AI planning 219

    8.2.1.3 Semantic techniques 219

    8.2.1.4 Expert systems and genetic algorithms 220

    8.2.2 Machine Learning Approaches 220

    8.2.2.1 Instance-based learning 221

    8.2.2.2 Reinforcement learning 222

    8.2.2.3 Feature and example selection 225

    8.3 Introducing Power-Aware Approaches 225

    8.3.1 Use of Virtualization 226

    8.3.2 Turning On and Off Machines 228

    8.3.3 Dynamic Voltage and Frequency Scaling 229

    8.3.4 Hybrid Nodes and Data Centers 230

    8.4 Experiences of Applying ML on Power-Aware Self-Management 230

    8.4.1 Case Study Approach 231

    8.4.2 Scheduling and Power Trade-Off 231

    8.4.3 Experimenting with Power-Aware Techniques 233

    8.4.4 Applying Machine Learning 236

    8.4.5 Conclusions from the Experiments 238

    8.5 Conclusions on Intelligent Power-Aware Self-Management 238

    References 240

    9 ENERGY EFFICIENCY METRICS FOR DATA CENTERS 245
    Javid Taheri and Albert Y. Zomaya

    9.1 Introduction 245

    9.1.1 Background 245

    9.1.2 Data Center Energy Use 246

    9.1.3 Data Center Characteristics 246

    9.1.3.1 Electric power 247

    9.1.3.2 Heat removal 249

    9.1.4 Energy Efficiency 250

    9.2 Fundamentals of Metrics 250

    9.2.1 Demand and Constraints on Data Center Operators 250

    9.2.2 Metrics 251

    9.2.2.1 Criteria for good metrics 251

    9.2.2.2 Methodology 252

    9.2.2.3 Stability of metrics 252

    9.3 Data Center Energy Efficiency 252

    9.3.1 Holistic IT Efficiency Metrics 252

    9.3.1.1 Fixed versus proportional overheads 254

    9.3.1.2 Power versus energy 254

    9.3.1.3 Performance versus productivity 255

    9.3.2 Code of Conduct 256

    9.3.2.1 Environmental statement 256

    9.3.2.2 Problem statement 256

    9.3.2.3 Scope of the CoC 257

    9.3.2.4 Aims and objectives of CoC 258

    9.3.3 Power Use in Data Centers 259

    9.3.3.1 Data center IT power to utility power relationship 259

    9.3.3.2 Chiller efficiency and external temperature 260

    9.4 Available Metrics 260

    9.4.1 The Green Grid 261

    9.4.1.1 Power usage effectiveness (PUE) 261

    9.4.1.2 Data center efficiency (DCE) 262

    9.4.1.3 Data center infrastructure efficiency (DCiE) 262

    9.4.1.4 Data center productivity (DCP) 263

    9.4.2 McKinsey 263

    9.4.3 Uptime Institute 264

    9.4.3.1 Site infrastructure power overhead multiplier (SI-POM) 265

    9.4.3.2 IT hardware power overhead multiplier (H-POM) 266

    9.4.3.3 DC hardware compute load per unit of computing work done 266

    9.4.3.4 Deployed hardware utilization ratio (DH-UR) 266

    9.4.3.5 Deployed hardware utilization efficiency (DH-UE) 267

    9.5 Harmonizing Global Metrics for Data Center Energy Efficiency 267

    References 268

    10 AUTONOMIC GREEN COMPUTING IN LARGE-SCALE DATA CENTERS 271
    Haoting Luo, Bithika Khargharia, Salim Hariri, and Youssif Al-Nashif

    10.1 Introduction 271

    10.2 Related Technologies and Techniques 272

    10.2.1 Power Optimization Techniques in Data Centers 272

    10.2.2 Design Model 273

    10.2.3 Networks 274

    10.2.4 Data Center Power Distribution 275

    10.2.5 Data Center Power-Efficient Metrics 276

    10.2.6 Modeling Prototype and Testbed 277

    10.2.7 Green Computing 278

    10.2.8 Energy Proportional Computing 280

    10.2.9 Hardware Virtualization Technology 281

    10.2.10 Autonomic Computing 282

    10.3 Autonomic Green Computing: A Case Study 283

    10.3.1 Autonomic Management Platform 285

    10.3.1.1 Platform architecture 285

    10.3.1.2 DEVS-based modeling and simulation platform 285

    10.3.1.3 Workload generator 287

    10.3.2 Model Parameter Evaluation 288

    10.3.2.1 State transitioning overhead 288

    10.3.2.2 VM template evaluation 289

    10.3.2.3 Scalability analysis 291

    10.3.3 Autonomic Power Efficiency Management Algorithm (Performance Per Watt) 291

    10.3.4 Simulation Results and Evaluation 293

    10.3.4.1 Analysis of energy and performance trade-offs 296

    10.4 Conclusion and Future Directions 297

    References 298

    11 ENERGY AND THERMAL AWARE SCHEDULING IN DATA CENTERS 301
    Gaurav Dhiman, Raid Ayoub, and Tajana S. Rosing

    11.1 Introduction 301

    11.2 Related Work 302

    11.3 Intermachine Scheduling 305

    11.3.1 Performance and Power Profile of VMs 305

    11.3.2 Architecture 309

    11.3.2.1 vgnode 309

    11.3.2.2 vgxen 310

    11.3.2.3 vgdom 312

    11.3.2.4 vgserv 312

    11.4 Intramachine Scheduling 315

    11.4.1 Air-Forced Thermal Modeling and Cost 316

    11.4.2 Cooling Aware Dynamic Workload Scheduling 317

    11.4.3 Scheduling Mechanism 318

    11.4.4 Cooling Costs Predictor 319

    11.5 Evaluation 321

    11.5.1 Intermachine Scheduler (vGreen) 321

    11.5.2 Heterogeneous Workloads 323

    11.5.2.1 Comparison with DVFS policies 325

    11.5.2.2 Homogeneous workloads 328

    11.5.3 Intramachine Scheduler (Cool and Save) 328

    11.5.3.1 Results 331

    11.5.3.2 Overhead of CAS 333

    11.6 Conclusion 333

    References 334

    12 QOS-AWARE POWER MANAGEMENT IN DATA CENTERS 339
    Jiayu Gong and Cheng-Zhong Xu

    12.1 Introduction 339

    12.2 Problem Classification 340

    12.2.1 Objective and Constraint 340

    12.2.2 Scope and Time Granularities 340

    12.2.3 Methodology 341

    12.2.4 Power Management Mechanism 342

    12.3 Energy Efficiency 344

    12.3.1 Energy-Efficiency Metrics 344

    12.3.2 Improving Energy Efficiency 346

    12.3.2.1 Energy minimization with performance guarantee 346

    12.3.2.2 Performance maximization under power budget 348

    12.3.2.3 Trade-off between power and performance 348

    12.3.3 Energy-Proportional Computing 350

    12.4 Power Capping 351

    12.5 Conclusion 353

    References 356

    13 ENERGY-EFFICIENT STORAGE SYSTEMS FOR DATA CENTERS 361
    Sudhanva Gurumurthi and Anand Sivasubramaniam

    13.1 Introduction 361

    13.2 Disk Drive Operation and Disk Power 362

    13.2.1 An Overview of Disk Drives 362

    13.2.2 Sources of Disk Power Consumption 363

    13.2.3 Disk Activity and Power Consumption 365

    13.3 Disk and Storage Power Reduction Techniques 366

    13.3.1 Exploiting the STANDBY State 368

    13.3.2 Reducing Seek Activity 369

    13.3.3 Achieving Energy Proportionality 369

    13.3.3.1 Hardware approaches 369

    13.3.3.2 Software approaches 370

    13.4 Using Nonvolatile Memory and Solid-State Disks 371

    13.5 Conclusions 372

    References 373

    14 AUTONOMIC ENERGY/PERFORMANCE OPTIMIZATIONS FOR MEMORY IN SERVERS 377
    Bithika Khargharia and Mazin Yousif

    14.1 Introduction 378

    14.2 Classifications of Dynamic Power Management Techniques 380

    14.2.1 Heuristic and Predictive Techniques 380

    14.2.2 QoS and Energy Trade-Offs 381

    14.3 Applications of Dynamic Power Management (DPM) 382

    14.3.1 Power Management of System Components in Isolation 382

    14.3.2 Joint Power Management of System Components 383

    14.3.3 Holistic System-Level Power Management 383

    14.4 Autonomic Power and Performance Optimization of Memory Subsystems in Server Platforms 384

    14.4.1 Adaptive Memory Interleaving Technique for Power and Performance Management 384

    14.4.1.1 Formulating the optimization problem 386

    14.4.1.2 Memory appflow 389

    14.4.2 Industry Techniques 389

    14.4.2.1 Enhancements in memory hardware design 390

    14.4.2.2 Adding more operating states 390

    14.4.2.3 Faster transition to and from low power states 390

    14.4.2.4 Memory consolidation 390

    14.5 Conclusion 391

    References 391

    15 ROD: A PRACTICAL APPROACH TO IMPROVING RELIABILITY OF ENERGY-EFFICIENT PARALLEL DISK SYSTEMS 395
    Shu Yin, Xiaojun Ruan, Adam Manzanares, and Xiao Qin

    15.1 Introduction 395

    15.2 Modeling Reliability of Energy-Efficient Parallel Disks 396

    15.2.1 The MINT Model 396

    15.2.1.1 Disk utilization 398

    15.2.1.2 Temperature 398

    15.2.1.3 Power-state transition frequency 399

    15.2.1.4 Single disk reliability model 399

    15.2.2 MAID, Massive Arrays of Idle Disks 400

    15.3 Improving Reliability of MAID via Disk Swapping 401

    15.3.1 Improving Reliability of Cache Disks in MAID 401

    15.3.2 Swapping Disks Multiple Times 404

    15.4 Experimental Results and Evaluation 405

    15.4.1 Experimental Setup 405

    15.4.2 Disk Utilization 406

    15.4.3 The Single Disk Swapping Strategy 406

    15.4.4 The Multiple Disk Swapping Strategy 409

    15.5 Related Work 411

    15.6 Conclusions 412

    References 413

    16 EMBRACING THE MEMORY AND I/O WALLS FOR ENERGY-EFFICIENT SCIENTIFIC COMPUTING 417
    Chung-Hsing Hsu and Wu-Chun Feng

    16.1 Introduction 417

    16.2 Background and Related Work 420

    16.2.1 DVFS-Enabled Processors 420

    16.2.2 DVFS Scheduling Algorithms 421

    16.2.3 Memory-Aware, Interval-Based Algorithms 422

    16.3 β-Adaptation: A New DVFS Algorithm 423

    16.3.1 The Compute-Boundedness Metric, β 423

    16.3.2 The Frequency Calculating Formula, f ∗ 424

    16.3.3 The Online β Estimation 425

    16.3.4 Putting It All Together 427

    16.4 Algorithm Effectiveness 429

    16.4.1 A Comparison to Other DVFS Algorithms 429

    16.4.2 Frequency Emulation 432

    16.4.3 The Minimum Dependence to the PMU 436

    16.5 Conclusions and Future Work 438

    References 439

    17 MULTIPLE FREQUENCY SELECTION IN DVFS-ENABLED PROCESSORS TO MINIMIZE ENERGY CONSUMPTION 443
    Nikzad Babaii Rizvandi, Albert Y. Zomaya, Young Choon Lee, Ali Javadzadeh Boloori, and Javid Taheri

    17.1 Introduction 443

    17.2 Energy Efficiency in HPC Systems 444

    17.3 Exploitation of Dynamic Voltage–Frequency Scaling 446

    17.3.1 Independent Slack Reclamation 446

    17.3.2 Integrated Schedule Generation 447

    17.4 Preliminaries 448

    17.4.1 System and Application Models 448

    17.4.2 Energy Model 448

    17.5 Energy-Aware Scheduling via DVFS 450

    17.5.1 Optimum Continuous Frequency 450

    17.5.2 Reference Dynamic Voltage–Frequency Scaling (RDVFS) 451

    17.5.3 Maximum-Minimum-Frequency for Dynamic Voltage–Frequency Scaling (MMF-DVFS) 452

    17.5.4 Multiple Frequency Selection for Dynamic Voltage–Frequency Scaling (MFS-DVFS) 453

    17.5.4.1 Task eligibility 454

    17.6 Experimental Results 456

    17.6.1 Simulation Settings 456

    17.6.2 Results 458

    17.7 Conclusion 461

    References 461

    18 THE PARAMOUNTCY OF RECONFIGURABLE COMPUTING 465
    Reiner Hartenstein

    18.1 Introduction 465

    18.2 Why Computers are Important 466

    18.2.1 Computing for a Sustainable Environment 470

    18.3 Performance Progress Stalled 472

    18.3.1 Unaffordable Energy Consumption of Computing 473

    18.3.2 Crashing into the Programming Wall 475

    18.4 The Tail is Wagging the Dog (Accelerators) 488

    18.4.1 Hardwired Accelerators 489

    18.4.2 Programmable Accelerators 490

    18.5 Reconfigurable Computing 494

    18.5.1 Speedup Factors by FPGAs 498

    18.5.2 The Reconfigurable Computing Paradox 501

    18.5.3 Saving Energy by Reconfigurable Computing 505

    18.5.3.1 Traditional green computing 506

    18.5.3.2 The role of graphics processors 507

    18.5.3.3 Wintel versus ARM 508

    18.5.4 Reconfigurable Computing is the Silver Bullet 511

    18.5.4.1 A new world model of computing 511

    18.5.5 The Twin-Paradigm Approach to Tear Down the Wall 514

    18.5.6 A Mass Movement Needed as Soon as Possible 517

    18.5.6.1 Legacy software from the mainframe age 518

    18.5.7 How to Reinvent Computing 519 18.6 Conclusions 526

    References 529

    19 WORKLOAD CLUSTERING FOR INCREASING ENERGY SAVINGS ON EMBEDDED MPSOCS 549
    Ozcan Ozturk, Mahmut Kandemir, and Sri Hari Krishna Narayanan

    19.1 Introduction 549

    19.2 Embedded MPSoC Architecture, Execution Model, and Related Work 550

    19.3 Our Approach 551

    19.3.1 Overview 551

    19.3.2 Technical Details and Problem Formulation 553

    19.3.2.1 System and job model 553

    19.3.2.2 Mathematical programing model 554

    19.3.2.3 Example 557

    19.4 Experimental Evaluation 560

    19.5 Conclusions 564

    References 565

    20 ENERGY-EFFICIENT INTERNET INFRASTRUCTURE 567
    Weirong Jiang and Viktor K. Prasanna

    20.1 Introduction 567

    20.1.1 Performance Challenges 568

    20.1.2 Existing Packet Forwarding Approaches 570

    20.1.2.1 Software approaches 570

    20.1.2.2 Hardware approaches 571

    20.2 SRAM-Based Pipelined IP Lookup Architectures: Alternative to TCAMs 571

    20.3 Data Structure Optimization for Power Efficiency 573

    20.3.1 Problem Formulation 574

    20.3.1.1 Non-pipelined and pipelined engines 574

    20.3.1.2 Power function of SRAM 575

    20.3.2 Special Case: Uniform Stride 576

    20.3.3 Dynamic Programming 576

    20.3.4 Performance Evaluation 577

    20.3.4.1 Results for non-pipelined architecture 578

    20.3.4.2 Results for pipelined architecture 578

    20.4 Architectural Optimization to Reduce Dynamic Power Dissipation 580

    20.4.1 Analysis and Motivation 581

    20.4.1.1 Traffic locality 582

    20.4.1.2 Traffic rate variation 582

    20.4.1.3 Access frequency on different stages 583

    20.4.2 Architecture-Specific Techniques 583

    20.4.2.1 Inherent caching 584

    20.4.2.2 Local clocking 584

    20.4.2.3 Fine-grained memory enabling 585

    20.4.3 Performance Evaluation 585

    20.5 Related Work 588

    20.6 Summary 589

    References 589

    21 DEMAND RESPONSE IN THE SMART GRID: A DISTRIBUTED COMPUTING PERSPECTIVE 593
    Chen Wang and Martin De Groot

    21.1 Introduction 593

    21.2 Demand Response 595

    21.2.1 Existing Demand Response Programs 595

    21.2.2 Demand Response Supported by the Smart Grid 597

    21.3 Demand Response as a Distributed System 600

    21.3.1 An Overlay Network for Demand Response 600

    21.3.2 Event Driven Demand Response 602

    21.3.3 Cost Driven Demand Response 604

    21.3.4 A Decentralized Demand Response Framework 609

    21.3.5 Accountability of Coordination Decision Making 610

    21.4 Summary 611

    References 611

    22 RESOURCE MANAGEMENT FOR DISTRIBUTED MOBILE COMPUTING 615
    Jong-Kook Kim

    22.1 Introduction 615

    22.2 Single-Hop Energy-Constrained Environment 617

    22.2.1 System Model 617

    22.2.2 Related Work 620

    22.2.3 Heuristic Descriptions 621

    22.2.3.1 Mapping event 621

    22.2.3.2 Scheduling communications 621

    22.2.3.3 Opportunistic load balancing and minimum energy greedy heuristics 622

    22.2.3.4 ME-MC heuristic 622

    22.2.3.5 ME-ME heuristic 624

    22.2.3.6 CRME heuristic 625

    22.2.3.7 Originator and random 626

    22.2.3.8 Upper bound 626

    22.2.4 Simulation Model 628

    22.2.5 Results 630

    22.2.6 Summary 634

    22.3 Multihop Distributed Mobile Computing Environment 635

    22.3.1 The Multihop System Model 635

    22.3.2 Energy-Aware Routing Protocol 636

    22.3.2.1 Overview 636

    22.3.2.2 DSDV 637

    22.3.2.3 DSDV remaining energy 637

    22.3.2.4 DSDV-energy consumption per remaining energy 637

    22.3.3 Heuristic Description 638

    22.3.3.1 Random 638

    22.3.3.2 Estimated minimum total energy (EMTE) 638

    22.3.3.3 K-percent-speed (KPS) and K-percent-energy (KPE) 639

    22.3.3.4 Energy ratio and distance (ERD) 639

    22.3.3.5 ETC and distance (ETCD) 640

    22.3.3.6 Minimum execution time (MET) 640

    22.3.3.7 Minimum completion time (MCT) and minimum completion time with DVS (MCT-DVS) 640

    22.3.3.8 Switching algorithm (SA) 640

    22.3.4 Simulation Model 641

    22.3.5 Results 643

    22.3.5.1 Distributed resource management 643

    22.3.5.2 Energy-aware protocol 644

    22.3.6 Summary 644

    22.4 Future Work 647

    References 647

    23 AN ENERGY-AWARE FRAMEWORK FOR MOBILE DATA MINING 653
    Carmela Comito, Domenico Talia, and Paolo Trunfio

    23.1 Introduction 653

    23.2 System Architecture 654

    23.3 Mobile Device Components 657

    23.4 Energy Model 659

    23.5 Clustering Scheme 664

    23.5.1 Clustering the M2M Architecture 666

    23.6 Conclusion 670

    References 670

    24 ENERGY AWARENESS AND EFFICIENCY IN WIRELESS SENSOR NETWORKS: FROM PHYSICAL DEVICES TO THE COMMUNICATION LINK 673
    Fla´ via C. Delicato and Paulo F. Pires

    24.1 Introduction 673

    24.2 WSN and Power Dissipation Models 676

    24.2.1 Network and Node Architecture 676

    24.2.2 Sources of Power Dissipation in WSNs 679

    24.3 Strategies for Energy Optimization 683

    24.3.1 Intranode Level 684

    24.3.1.1 Duty cycling 685

    24.3.1.2 Adaptive sensing 691

    24.3.1.3 Dynamic voltage scale (DVS) 693

    24.3.1.4 OS task scheduling 694

    24.3.2 Internode Level 695

    24.3.2.1 Transmission power control 695

    24.3.2.2 Dynamic modulation scaling 696

    24.3.2.3 Link layer optimizations 698

    24.4 Final Remarks 701

    References 702

    25 NETWORK-WIDE STRATEGIES FOR ENERGY EFFICIENCY IN WIRELESS SENSOR NETWORKS 709
    Fla´ via C. Delicato and Paulo F. Pires

    25.1 Introduction 709

    25.2 Data Link Layer 711

    25.2.1 Topology Control Protocols 712

    25.2.2 Energy-Efficient MAC Protocols 714

    25.2.2.1 Scheduled MAC protocols in WSNs 716

    25.2.2.2 Contention-based MAC protocols 717

    25.3 Network Layer 719

    25.3.1 Flat and Hierarchical Protocols 722

    25.4 Transport Layer 725

    25.5 Application Layer 729

    25.5.1 Task Scheduling 729

    25.5.2 Data Aggregation and Data Fusion in WSNs 733

    25.5.2.1 Approaches of data fusion for energy efficiency 735

    25.5.2.2 Data aggregation strategies 736

    25.6 Final Remarks 740

    References 741

    26 ENERGY MANAGEMENT IN HETEROGENEOUS WIRELESS HEALTH CARE NETWORKS 751
    Nima Nikzad, Priti Aghera, Piero Zappi, and Tajana S. Rosing

    26.1 Introduction 751

    26.2 System Model 753

    26.2.1 Health Monitoring Task Model 753

    26.3 Collaborative Distributed Environmental Sensing 755

    26.3.1 Node Neighborhood and Localization Rate 757

    26.3.2 Energy Ratio and Sensing Rate 758

    26.3.3 Duty Cycling and Prediction 759

    26.4 Task Assignment in a Body Area Network 760

    26.4.1 Optimal Task Assignment 760

    26.4.2 Dynamic Task Assignment 762

    26.4.2.1 DynAGreen algorithm 763

    26.4.2.2 DynAGreenLife algorithm 768

    26.5 Results 771

    26.5.1 Collaborative Sensing 771

    26.5.1.1 Results 772

    26.5.2 Dynamic Task Assignment 776

    26.5.2.1 Performance in static conditions 777

    26.5.2.2 Dynamic adaptability 780

    26.6 Conclusion 784

    References 785

    INDEX 787

EnergyEfficient Distributed Computing Systems

Product form

£112.46

Includes FREE delivery

RRP £124.95 – you save £12.49 (9%)

Order before 4pm today for delivery by Mon 29 Dec 2025.

A Hardback by Albert Y. Zomaya, Young Choon Lee

2 in stock


    View other formats and editions of EnergyEfficient Distributed Computing Systems by Albert Y. Zomaya

    Publisher: John Wiley & Sons Inc
    Publication Date: 14/09/2012
    ISBN13: 9780470908754, 978-0470908754
    ISBN10: 0470908750

    Description

    Book Synopsis
    The energy consumption issue in distributed computing systems raises various monetary, environmental and system performance concerns.Electricity consumption in the US doubled from 2000 to 2005. From a financial and environmental standpoint, reducing the consumption of electricity is important, yet these reforms must not lead to performance degradation of the computing systems. These contradicting constraints create a suite of complex problems that need to be resolved in order to lead to ''greener'' distributed computing systems. This book brings together a group of outstanding researchers that investigate the different facets of green and energy efficient distributed computing.

    Key features:

    • One of the first books of its kind
    • Features latest research findings on emerging topics by well-known scientists
    • Valuable research for grad students, postdocs, and researchers
    • Research will greatly feed into other technologies and applicatio

      Table of Contents
      PREFACE xxix

      ACKNOWLEDGMENTS xxxi

      CONTRIBUTORS xxxiii

      1 POWER ALLOCATION AND TASK SCHEDULING ON MULTIPROCESSOR COMPUTERS WITH ENERGY AND TIME CONSTRAINTS 1
      Keqin Li

      1.1 Introduction 1

      1.1.1 Energy Consumption 1

      1.1.2 Power Reduction 2

      1.1.3 Dynamic Power Management 3

      1.1.4 Task Scheduling with Energy and Time Constraints 4

      1.1.5 Chapter Outline 5

      1.2 Preliminaries 5

      1.2.1 Power Consumption Model 5

      1.2.2 Problem Definitions 6

      1.2.3 Task Models 7

      1.2.4 Processor Models 8

      1.2.5 Scheduling Models 9

      1.2.6 Problem Decomposition 9

      1.2.7 Types of Algorithms 10

      1.3 Problem Analysis 10

      1.3.1 Schedule Length Minimization 10

      1.3.1.1 Uniprocessor computers 10

      1.3.1.2 Multiprocessor computers 11

      1.3.2 Energy Consumption Minimization 12

      1.3.2.1 Uniprocessor computers 12

      1.3.2.2 Multiprocessor computers 13

      1.3.3 Strong NP-Hardness 14

      1.3.4 Lower Bounds 14

      1.3.5 Energy-Delay Trade-off 15

      1.4 Pre-Power-Determination Algorithms 16

      1.4.1 Overview 16

      1.4.2 Performance Measures 17

      1.4.3 Equal-Time Algorithms and Analysis 18

      1.4.3.1 Schedule length minimization 18

      1.4.3.2 Energy consumption minimization 19

      1.4.4 Equal-Energy Algorithms and Analysis 19

      1.4.4.1 Schedule length minimization 19

      1.4.4.2 Energy consumption minimization 21

      1.4.5 Equal-Speed Algorithms and Analysis 22

      1.4.5.1 Schedule length minimization 22

      1.4.5.2 Energy consumption minimization 23

      1.4.6 Numerical Data 24

      1.4.7 Simulation Results 25

      1.5 Post-Power-Determination Algorithms 28

      1.5.1 Overview 28

      1.5.2 Analysis of List Scheduling Algorithms 29

      1.5.2.1 Analysis of algorithm LS 29

      1.5.2.2 Analysis of algorithm LRF 30

      1.5.3 Application to Schedule Length Minimization 30

      1.5.4 Application to Energy Consumption Minimization 31

      1.5.5 Numerical Data 32

      1.5.6 Simulation Results 32

      1.6 Summary and Further Research 33

      References 34

      2 POWER-AWARE HIGH PERFORMANCE COMPUTING 39
      Rong Ge and Kirk W. Cameron

      2.1 Introduction 39

      2.2 Background 41

      2.2.1 Current Hardware Technology and Power Consumption 41

      2.2.1.1 Processor power 41

      2.2.1.2 Memory subsystem power 42

      2.2.2 Performance 43

      2.2.3 Energy Efficiency 44

      2.3 Related Work 45

      2.3.1 Power Profiling 45

      2.3.1.1 Simulator-based power estimation 45

      2.3.1.2 Direct measurements 46

      2.3.1.3 Event-based estimation 46

      2.3.2 Performance Scalability on Power-Aware Systems 46

      2.3.3 Adaptive Power Allocation for Energy-Efficient Computing 47

      2.4 PowerPack: Fine-Grain Energy Profiling of HPC Applications 48

      2.4.1 Design and Implementation of PowerPack 48

      2.4.1.1 Overview 48

      2.4.1.2 Fine-grain systematic power measurement 50

      2.4.1.3 Automatic power profiling and code synchronization 51

      2.4.2 Power Profiles of HPC Applications and Systems 53

      2.4.2.1 Power distribution over components 53

      2.4.2.2 Power dynamics of applications 54

      2.4.2.3 Power bounds on HPC systems 55

      2.4.2.4 Power versus dynamic voltage and frequency scaling 57

      2.5 Power-Aware Speedup Model 59

      2.5.1 Power-Aware Speedup 59

      2.5.1.1 Sequential execution time for a single workload T1(w, f ) 60

      2.5.1.2 Sequential execution time for an ON-chip/OFF-chip workload 60

      2.5.1.3 Parallel execution time on N processors for an ON-/OFF-chip workload with DOP = i 61

      2.5.1.4 Power-aware speedup for DOP and ON-/OFF-chip workloads 62

      2.5.2 Model Parametrization and Validation 63

      2.5.2.1 Coarse-grain parametrization and validation 64

      2.5.2.2 Fine-grain parametrization and validation 66

      2.6 Model Usages 69

      2.6.1 Identification of Optimal System Configurations 70

      2.6.2 PAS-Directed Energy-Driven Runtime Frequency Scaling 71

      2.7 Conclusion 73

      References 75

      3 ENERGY EFFICIENCY IN HPC SYSTEMS 81
      Ivan Rodero and Manish Parashar

      3.1 Introduction 81

      3.2 Background and Related Work 83

      3.2.1 CPU Power Management 83

      3.2.1.1 OS-level CPU power management 83

      3.2.1.2 Workload-level CPU power management 84

      3.2.1.3 Cluster-level CPU power management 84

      3.2.2 Component-Based Power Management 85

      3.2.2.1 Memory subsystem 85

      3.2.2.2 Storage subsystem 86

      3.2.3 Thermal-Conscious Power Management 87

      3.2.4 Power Management in Virtualized Datacenters 87

      3.3 Proactive, Component-Based Power Management 88

      3.3.1 Job Allocation Policies 88

      3.3.2 Workload Profiling 90

      3.4 Quantifying Energy Saving Possibilities 91

      3.4.1 Methodology 92

      3.4.2 Component-Level Power Requirements 92

      3.4.3 Energy Savings 94

      3.5 Evaluation of the Proposed Strategies 95

      3.5.1 Methodology 96

      3.5.2 Workloads 96

      3.5.3 Metrics 97

      3.6 Results 97

      3.7 Concluding Remarks 102

      3.8 Summary 103

      References 104

      4 A STOCHASTIC FRAMEWORK FOR HIERARCHICAL SYSTEM-LEVEL POWER MANAGEMENT 109
      Peng Rong and Massoud Pedram

      4.1 Introduction 109

      4.2 Related Work 111

      4.3 A Hierarchical DPM Architecture 113

      4.4 Modeling 114

      4.4.1 Model of the Application Pool 114

      4.4.2 Model of the Service Flow Control 118

      4.4.3 Model of the Simulated Service Provider 119

      4.4.4 Modeling Dependencies between SPs 120

      4.5 Policy Optimization 122

      4.5.1 Mathematical Formulation 122

      4.5.2 Optimal Time-Out Policy for Local Power Manager 123

      4.6 Experimental Results 125

      4.7 Conclusion 130

      References 130

      5 ENERGY-EFFICIENT RESERVATION INFRASTRUCTURE FOR GRIDS, CLOUDS, AND NETWORKS 133
      Anne-Ce´ cile Orgerie and Laurent Lefe` vre

      5.1 Introduction 133

      5.2 Related Works 134

      5.2.1 Server and Data Center Power Management 135

      5.2.2 Node Optimizations 135

      5.2.3 Virtualization to Improve Energy Efficiency 136

      5.2.4 Energy Awareness in Wired Networking Equipment 136

      5.2.5 Synthesis 137

      5.3 ERIDIS: Energy-Efficient Reservation Infrastructure for Large-Scale Distributed Systems 138

      5.3.1 ERIDIS Architecture 138

      5.3.2 Management of the Resource Reservations 141

      5.3.3 Resource Management and On/Off Algorithms 145

      5.3.4 Energy-Consumption Estimates 146

      5.3.5 Prediction Algorithms 146

      5.4 EARI: Energy-Aware Reservation Infrastructure for Data Centers and Grids 147

      5.4.1 EARI’s Architecture 147

      5.4.2 Validation of EARI on Experimental Grid Traces 147

      5.5 GOC: Green Open Cloud 149

      5.5.1 GOC’s Resource Manager Architecture 150

      5.5.2 Validation of the GOC Framework 152

      5.6 HERMES: High Level Energy-Aware Model for Bandwidth Reservation in End-To-End Networks 152

      5.6.1 HERMES’ Architecture 154

      5.6.2 The Reservation Process of HERMES 155

      5.6.3 Discussion 157

      5.7 Summary 158

      References 158

      6 ENERGY-EFFICIENT JOB PLACEMENT ON CLUSTERS, GRIDS, AND CLOUDS 163
      Damien Borgetto, Henri Casanova, Georges Da Costa, and Jean-Marc Pierson

      6.1 Problem and Motivation 163

      6.1.1 Context 163

      6.1.2 Chapter Roadmap 164

      6.2 Energy-Aware Infrastructures 164

      6.2.1 Buildings 165

      6.2.2 Context-Aware Buildings 165

      6.2.3 Cooling 166

      6.3 Current Resource Management Practices 167

      6.3.1 Widely Used Resource Management Systems 167

      6.3.2 Job Requirement Description 169

      6.4 Scientific and Technical Challenges 170

      6.4.1 Theoretical Difficulties 170

      6.4.2 Technical Difficulties 170

      6.4.3 Controlling and Tuning Jobs 171

      6.5 Energy-Aware Job Placement Algorithms 172

      6.5.1 State of the Art 172

      6.5.2 Detailing One Approach 174

      6.6 Discussion 180

      6.6.1 Open Issues and Opportunities 180

      6.6.2 Obstacles for Adoption in Production 182

      6.7 Conclusion 183

      References 184

      7 COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENT SCHEDULING ALGORITHMS FOR COMPUTATIONAL GRIDS 189
      Peder Lindberg, James Leingang, Daniel Lysaker, Kashif Bilal, Samee Ullah Khan, Pascal Bouvry, Nasir Ghani, Nasro Min-Allah, and Juan Li

      7.1 Introduction 189

      7.2 Problem Formulation 191

      7.2.1 The System Model 191

      7.2.1.1 PEs 191

      7.2.1.2 DVS 191

      7.2.1.3 Tasks 192

      7.2.1.4 Preliminaries 192

      7.2.2 Formulating the Energy-Makespan Minimization Problem 192

      7.3 Proposed Algorithms 193

      7.3.1 Greedy Heuristics 194

      7.3.1.1 Greedy heuristic scheduling algorithm 196

      7.3.1.2 Greedy-min 197

      7.3.1.3 Greedy-deadline 198

      7.3.1.4 Greedy-max 198

      7.3.1.5 MaxMin 199

      7.3.1.6 ObFun 199

      7.3.1.7 MinMin StdDev 202

      7.3.1.8 MinMax StdDev 202

      7.4 Simulations, Results, and Discussion 203

      7.4.1 Workload 203

      7.4.2 Comparative Results 204

      7.4.2.1 Small-size problems 204

      7.4.2.2 Large-size problems 206

      7.5 Related Works 211

      7.6 Conclusion 211

      References 212

      8 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING 215
      Josep LL. Berral, In˜ igo Goiri, Ramon Nou, Ferran Julia` , Josep O. Fito´ , Jordi Guitart, Ricard Gavalda´ , and Jordi Torres

      8.1 Introduction 215

      8.1.1 Energetic Impact of the Cloud 216

      8.1.2 An Intelligent Way to Manage Data Centers 216

      8.1.3 Current Autonomic Computing Techniques 217

      8.1.4 Power-Aware Autonomic Computing 217

      8.1.5 State of the Art and Case Study 218

      8.2 Intelligent Self-Management 218

      8.2.1 Classical AI Approaches 219

      8.2.1.1 Heuristic algorithms 219

      8.2.1.2 AI planning 219

      8.2.1.3 Semantic techniques 219

      8.2.1.4 Expert systems and genetic algorithms 220

      8.2.2 Machine Learning Approaches 220

      8.2.2.1 Instance-based learning 221

      8.2.2.2 Reinforcement learning 222

      8.2.2.3 Feature and example selection 225

      8.3 Introducing Power-Aware Approaches 225

      8.3.1 Use of Virtualization 226

      8.3.2 Turning On and Off Machines 228

      8.3.3 Dynamic Voltage and Frequency Scaling 229

      8.3.4 Hybrid Nodes and Data Centers 230

      8.4 Experiences of Applying ML on Power-Aware Self-Management 230

      8.4.1 Case Study Approach 231

      8.4.2 Scheduling and Power Trade-Off 231

      8.4.3 Experimenting with Power-Aware Techniques 233

      8.4.4 Applying Machine Learning 236

      8.4.5 Conclusions from the Experiments 238

      8.5 Conclusions on Intelligent Power-Aware Self-Management 238

      References 240

      9 ENERGY EFFICIENCY METRICS FOR DATA CENTERS 245
      Javid Taheri and Albert Y. Zomaya

      9.1 Introduction 245

      9.1.1 Background 245

      9.1.2 Data Center Energy Use 246

      9.1.3 Data Center Characteristics 246

      9.1.3.1 Electric power 247

      9.1.3.2 Heat removal 249

      9.1.4 Energy Efficiency 250

      9.2 Fundamentals of Metrics 250

      9.2.1 Demand and Constraints on Data Center Operators 250

      9.2.2 Metrics 251

      9.2.2.1 Criteria for good metrics 251

      9.2.2.2 Methodology 252

      9.2.2.3 Stability of metrics 252

      9.3 Data Center Energy Efficiency 252

      9.3.1 Holistic IT Efficiency Metrics 252

      9.3.1.1 Fixed versus proportional overheads 254

      9.3.1.2 Power versus energy 254

      9.3.1.3 Performance versus productivity 255

      9.3.2 Code of Conduct 256

      9.3.2.1 Environmental statement 256

      9.3.2.2 Problem statement 256

      9.3.2.3 Scope of the CoC 257

      9.3.2.4 Aims and objectives of CoC 258

      9.3.3 Power Use in Data Centers 259

      9.3.3.1 Data center IT power to utility power relationship 259

      9.3.3.2 Chiller efficiency and external temperature 260

      9.4 Available Metrics 260

      9.4.1 The Green Grid 261

      9.4.1.1 Power usage effectiveness (PUE) 261

      9.4.1.2 Data center efficiency (DCE) 262

      9.4.1.3 Data center infrastructure efficiency (DCiE) 262

      9.4.1.4 Data center productivity (DCP) 263

      9.4.2 McKinsey 263

      9.4.3 Uptime Institute 264

      9.4.3.1 Site infrastructure power overhead multiplier (SI-POM) 265

      9.4.3.2 IT hardware power overhead multiplier (H-POM) 266

      9.4.3.3 DC hardware compute load per unit of computing work done 266

      9.4.3.4 Deployed hardware utilization ratio (DH-UR) 266

      9.4.3.5 Deployed hardware utilization efficiency (DH-UE) 267

      9.5 Harmonizing Global Metrics for Data Center Energy Efficiency 267

      References 268

      10 AUTONOMIC GREEN COMPUTING IN LARGE-SCALE DATA CENTERS 271
      Haoting Luo, Bithika Khargharia, Salim Hariri, and Youssif Al-Nashif

      10.1 Introduction 271

      10.2 Related Technologies and Techniques 272

      10.2.1 Power Optimization Techniques in Data Centers 272

      10.2.2 Design Model 273

      10.2.3 Networks 274

      10.2.4 Data Center Power Distribution 275

      10.2.5 Data Center Power-Efficient Metrics 276

      10.2.6 Modeling Prototype and Testbed 277

      10.2.7 Green Computing 278

      10.2.8 Energy Proportional Computing 280

      10.2.9 Hardware Virtualization Technology 281

      10.2.10 Autonomic Computing 282

      10.3 Autonomic Green Computing: A Case Study 283

      10.3.1 Autonomic Management Platform 285

      10.3.1.1 Platform architecture 285

      10.3.1.2 DEVS-based modeling and simulation platform 285

      10.3.1.3 Workload generator 287

      10.3.2 Model Parameter Evaluation 288

      10.3.2.1 State transitioning overhead 288

      10.3.2.2 VM template evaluation 289

      10.3.2.3 Scalability analysis 291

      10.3.3 Autonomic Power Efficiency Management Algorithm (Performance Per Watt) 291

      10.3.4 Simulation Results and Evaluation 293

      10.3.4.1 Analysis of energy and performance trade-offs 296

      10.4 Conclusion and Future Directions 297

      References 298

      11 ENERGY AND THERMAL AWARE SCHEDULING IN DATA CENTERS 301
      Gaurav Dhiman, Raid Ayoub, and Tajana S. Rosing

      11.1 Introduction 301

      11.2 Related Work 302

      11.3 Intermachine Scheduling 305

      11.3.1 Performance and Power Profile of VMs 305

      11.3.2 Architecture 309

      11.3.2.1 vgnode 309

      11.3.2.2 vgxen 310

      11.3.2.3 vgdom 312

      11.3.2.4 vgserv 312

      11.4 Intramachine Scheduling 315

      11.4.1 Air-Forced Thermal Modeling and Cost 316

      11.4.2 Cooling Aware Dynamic Workload Scheduling 317

      11.4.3 Scheduling Mechanism 318

      11.4.4 Cooling Costs Predictor 319

      11.5 Evaluation 321

      11.5.1 Intermachine Scheduler (vGreen) 321

      11.5.2 Heterogeneous Workloads 323

      11.5.2.1 Comparison with DVFS policies 325

      11.5.2.2 Homogeneous workloads 328

      11.5.3 Intramachine Scheduler (Cool and Save) 328

      11.5.3.1 Results 331

      11.5.3.2 Overhead of CAS 333

      11.6 Conclusion 333

      References 334

      12 QOS-AWARE POWER MANAGEMENT IN DATA CENTERS 339
      Jiayu Gong and Cheng-Zhong Xu

      12.1 Introduction 339

      12.2 Problem Classification 340

      12.2.1 Objective and Constraint 340

      12.2.2 Scope and Time Granularities 340

      12.2.3 Methodology 341

      12.2.4 Power Management Mechanism 342

      12.3 Energy Efficiency 344

      12.3.1 Energy-Efficiency Metrics 344

      12.3.2 Improving Energy Efficiency 346

      12.3.2.1 Energy minimization with performance guarantee 346

      12.3.2.2 Performance maximization under power budget 348

      12.3.2.3 Trade-off between power and performance 348

      12.3.3 Energy-Proportional Computing 350

      12.4 Power Capping 351

      12.5 Conclusion 353

      References 356

      13 ENERGY-EFFICIENT STORAGE SYSTEMS FOR DATA CENTERS 361
      Sudhanva Gurumurthi and Anand Sivasubramaniam

      13.1 Introduction 361

      13.2 Disk Drive Operation and Disk Power 362

      13.2.1 An Overview of Disk Drives 362

      13.2.2 Sources of Disk Power Consumption 363

      13.2.3 Disk Activity and Power Consumption 365

      13.3 Disk and Storage Power Reduction Techniques 366

      13.3.1 Exploiting the STANDBY State 368

      13.3.2 Reducing Seek Activity 369

      13.3.3 Achieving Energy Proportionality 369

      13.3.3.1 Hardware approaches 369

      13.3.3.2 Software approaches 370

      13.4 Using Nonvolatile Memory and Solid-State Disks 371

      13.5 Conclusions 372

      References 373

      14 AUTONOMIC ENERGY/PERFORMANCE OPTIMIZATIONS FOR MEMORY IN SERVERS 377
      Bithika Khargharia and Mazin Yousif

      14.1 Introduction 378

      14.2 Classifications of Dynamic Power Management Techniques 380

      14.2.1 Heuristic and Predictive Techniques 380

      14.2.2 QoS and Energy Trade-Offs 381

      14.3 Applications of Dynamic Power Management (DPM) 382

      14.3.1 Power Management of System Components in Isolation 382

      14.3.2 Joint Power Management of System Components 383

      14.3.3 Holistic System-Level Power Management 383

      14.4 Autonomic Power and Performance Optimization of Memory Subsystems in Server Platforms 384

      14.4.1 Adaptive Memory Interleaving Technique for Power and Performance Management 384

      14.4.1.1 Formulating the optimization problem 386

      14.4.1.2 Memory appflow 389

      14.4.2 Industry Techniques 389

      14.4.2.1 Enhancements in memory hardware design 390

      14.4.2.2 Adding more operating states 390

      14.4.2.3 Faster transition to and from low power states 390

      14.4.2.4 Memory consolidation 390

      14.5 Conclusion 391

      References 391

      15 ROD: A PRACTICAL APPROACH TO IMPROVING RELIABILITY OF ENERGY-EFFICIENT PARALLEL DISK SYSTEMS 395
      Shu Yin, Xiaojun Ruan, Adam Manzanares, and Xiao Qin

      15.1 Introduction 395

      15.2 Modeling Reliability of Energy-Efficient Parallel Disks 396

      15.2.1 The MINT Model 396

      15.2.1.1 Disk utilization 398

      15.2.1.2 Temperature 398

      15.2.1.3 Power-state transition frequency 399

      15.2.1.4 Single disk reliability model 399

      15.2.2 MAID, Massive Arrays of Idle Disks 400

      15.3 Improving Reliability of MAID via Disk Swapping 401

      15.3.1 Improving Reliability of Cache Disks in MAID 401

      15.3.2 Swapping Disks Multiple Times 404

      15.4 Experimental Results and Evaluation 405

      15.4.1 Experimental Setup 405

      15.4.2 Disk Utilization 406

      15.4.3 The Single Disk Swapping Strategy 406

      15.4.4 The Multiple Disk Swapping Strategy 409

      15.5 Related Work 411

      15.6 Conclusions 412

      References 413

      16 EMBRACING THE MEMORY AND I/O WALLS FOR ENERGY-EFFICIENT SCIENTIFIC COMPUTING 417
      Chung-Hsing Hsu and Wu-Chun Feng

      16.1 Introduction 417

      16.2 Background and Related Work 420

      16.2.1 DVFS-Enabled Processors 420

      16.2.2 DVFS Scheduling Algorithms 421

      16.2.3 Memory-Aware, Interval-Based Algorithms 422

      16.3 β-Adaptation: A New DVFS Algorithm 423

      16.3.1 The Compute-Boundedness Metric, β 423

      16.3.2 The Frequency Calculating Formula, f ∗ 424

      16.3.3 The Online β Estimation 425

      16.3.4 Putting It All Together 427

      16.4 Algorithm Effectiveness 429

      16.4.1 A Comparison to Other DVFS Algorithms 429

      16.4.2 Frequency Emulation 432

      16.4.3 The Minimum Dependence to the PMU 436

      16.5 Conclusions and Future Work 438

      References 439

      17 MULTIPLE FREQUENCY SELECTION IN DVFS-ENABLED PROCESSORS TO MINIMIZE ENERGY CONSUMPTION 443
      Nikzad Babaii Rizvandi, Albert Y. Zomaya, Young Choon Lee, Ali Javadzadeh Boloori, and Javid Taheri

      17.1 Introduction 443

      17.2 Energy Efficiency in HPC Systems 444

      17.3 Exploitation of Dynamic Voltage–Frequency Scaling 446

      17.3.1 Independent Slack Reclamation 446

      17.3.2 Integrated Schedule Generation 447

      17.4 Preliminaries 448

      17.4.1 System and Application Models 448

      17.4.2 Energy Model 448

      17.5 Energy-Aware Scheduling via DVFS 450

      17.5.1 Optimum Continuous Frequency 450

      17.5.2 Reference Dynamic Voltage–Frequency Scaling (RDVFS) 451

      17.5.3 Maximum-Minimum-Frequency for Dynamic Voltage–Frequency Scaling (MMF-DVFS) 452

      17.5.4 Multiple Frequency Selection for Dynamic Voltage–Frequency Scaling (MFS-DVFS) 453

      17.5.4.1 Task eligibility 454

      17.6 Experimental Results 456

      17.6.1 Simulation Settings 456

      17.6.2 Results 458

      17.7 Conclusion 461

      References 461

      18 THE PARAMOUNTCY OF RECONFIGURABLE COMPUTING 465
      Reiner Hartenstein

      18.1 Introduction 465

      18.2 Why Computers are Important 466

      18.2.1 Computing for a Sustainable Environment 470

      18.3 Performance Progress Stalled 472

      18.3.1 Unaffordable Energy Consumption of Computing 473

      18.3.2 Crashing into the Programming Wall 475

      18.4 The Tail is Wagging the Dog (Accelerators) 488

      18.4.1 Hardwired Accelerators 489

      18.4.2 Programmable Accelerators 490

      18.5 Reconfigurable Computing 494

      18.5.1 Speedup Factors by FPGAs 498

      18.5.2 The Reconfigurable Computing Paradox 501

      18.5.3 Saving Energy by Reconfigurable Computing 505

      18.5.3.1 Traditional green computing 506

      18.5.3.2 The role of graphics processors 507

      18.5.3.3 Wintel versus ARM 508

      18.5.4 Reconfigurable Computing is the Silver Bullet 511

      18.5.4.1 A new world model of computing 511

      18.5.5 The Twin-Paradigm Approach to Tear Down the Wall 514

      18.5.6 A Mass Movement Needed as Soon as Possible 517

      18.5.6.1 Legacy software from the mainframe age 518

      18.5.7 How to Reinvent Computing 519 18.6 Conclusions 526

      References 529

      19 WORKLOAD CLUSTERING FOR INCREASING ENERGY SAVINGS ON EMBEDDED MPSOCS 549
      Ozcan Ozturk, Mahmut Kandemir, and Sri Hari Krishna Narayanan

      19.1 Introduction 549

      19.2 Embedded MPSoC Architecture, Execution Model, and Related Work 550

      19.3 Our Approach 551

      19.3.1 Overview 551

      19.3.2 Technical Details and Problem Formulation 553

      19.3.2.1 System and job model 553

      19.3.2.2 Mathematical programing model 554

      19.3.2.3 Example 557

      19.4 Experimental Evaluation 560

      19.5 Conclusions 564

      References 565

      20 ENERGY-EFFICIENT INTERNET INFRASTRUCTURE 567
      Weirong Jiang and Viktor K. Prasanna

      20.1 Introduction 567

      20.1.1 Performance Challenges 568

      20.1.2 Existing Packet Forwarding Approaches 570

      20.1.2.1 Software approaches 570

      20.1.2.2 Hardware approaches 571

      20.2 SRAM-Based Pipelined IP Lookup Architectures: Alternative to TCAMs 571

      20.3 Data Structure Optimization for Power Efficiency 573

      20.3.1 Problem Formulation 574

      20.3.1.1 Non-pipelined and pipelined engines 574

      20.3.1.2 Power function of SRAM 575

      20.3.2 Special Case: Uniform Stride 576

      20.3.3 Dynamic Programming 576

      20.3.4 Performance Evaluation 577

      20.3.4.1 Results for non-pipelined architecture 578

      20.3.4.2 Results for pipelined architecture 578

      20.4 Architectural Optimization to Reduce Dynamic Power Dissipation 580

      20.4.1 Analysis and Motivation 581

      20.4.1.1 Traffic locality 582

      20.4.1.2 Traffic rate variation 582

      20.4.1.3 Access frequency on different stages 583

      20.4.2 Architecture-Specific Techniques 583

      20.4.2.1 Inherent caching 584

      20.4.2.2 Local clocking 584

      20.4.2.3 Fine-grained memory enabling 585

      20.4.3 Performance Evaluation 585

      20.5 Related Work 588

      20.6 Summary 589

      References 589

      21 DEMAND RESPONSE IN THE SMART GRID: A DISTRIBUTED COMPUTING PERSPECTIVE 593
      Chen Wang and Martin De Groot

      21.1 Introduction 593

      21.2 Demand Response 595

      21.2.1 Existing Demand Response Programs 595

      21.2.2 Demand Response Supported by the Smart Grid 597

      21.3 Demand Response as a Distributed System 600

      21.3.1 An Overlay Network for Demand Response 600

      21.3.2 Event Driven Demand Response 602

      21.3.3 Cost Driven Demand Response 604

      21.3.4 A Decentralized Demand Response Framework 609

      21.3.5 Accountability of Coordination Decision Making 610

      21.4 Summary 611

      References 611

      22 RESOURCE MANAGEMENT FOR DISTRIBUTED MOBILE COMPUTING 615
      Jong-Kook Kim

      22.1 Introduction 615

      22.2 Single-Hop Energy-Constrained Environment 617

      22.2.1 System Model 617

      22.2.2 Related Work 620

      22.2.3 Heuristic Descriptions 621

      22.2.3.1 Mapping event 621

      22.2.3.2 Scheduling communications 621

      22.2.3.3 Opportunistic load balancing and minimum energy greedy heuristics 622

      22.2.3.4 ME-MC heuristic 622

      22.2.3.5 ME-ME heuristic 624

      22.2.3.6 CRME heuristic 625

      22.2.3.7 Originator and random 626

      22.2.3.8 Upper bound 626

      22.2.4 Simulation Model 628

      22.2.5 Results 630

      22.2.6 Summary 634

      22.3 Multihop Distributed Mobile Computing Environment 635

      22.3.1 The Multihop System Model 635

      22.3.2 Energy-Aware Routing Protocol 636

      22.3.2.1 Overview 636

      22.3.2.2 DSDV 637

      22.3.2.3 DSDV remaining energy 637

      22.3.2.4 DSDV-energy consumption per remaining energy 637

      22.3.3 Heuristic Description 638

      22.3.3.1 Random 638

      22.3.3.2 Estimated minimum total energy (EMTE) 638

      22.3.3.3 K-percent-speed (KPS) and K-percent-energy (KPE) 639

      22.3.3.4 Energy ratio and distance (ERD) 639

      22.3.3.5 ETC and distance (ETCD) 640

      22.3.3.6 Minimum execution time (MET) 640

      22.3.3.7 Minimum completion time (MCT) and minimum completion time with DVS (MCT-DVS) 640

      22.3.3.8 Switching algorithm (SA) 640

      22.3.4 Simulation Model 641

      22.3.5 Results 643

      22.3.5.1 Distributed resource management 643

      22.3.5.2 Energy-aware protocol 644

      22.3.6 Summary 644

      22.4 Future Work 647

      References 647

      23 AN ENERGY-AWARE FRAMEWORK FOR MOBILE DATA MINING 653
      Carmela Comito, Domenico Talia, and Paolo Trunfio

      23.1 Introduction 653

      23.2 System Architecture 654

      23.3 Mobile Device Components 657

      23.4 Energy Model 659

      23.5 Clustering Scheme 664

      23.5.1 Clustering the M2M Architecture 666

      23.6 Conclusion 670

      References 670

      24 ENERGY AWARENESS AND EFFICIENCY IN WIRELESS SENSOR NETWORKS: FROM PHYSICAL DEVICES TO THE COMMUNICATION LINK 673
      Fla´ via C. Delicato and Paulo F. Pires

      24.1 Introduction 673

      24.2 WSN and Power Dissipation Models 676

      24.2.1 Network and Node Architecture 676

      24.2.2 Sources of Power Dissipation in WSNs 679

      24.3 Strategies for Energy Optimization 683

      24.3.1 Intranode Level 684

      24.3.1.1 Duty cycling 685

      24.3.1.2 Adaptive sensing 691

      24.3.1.3 Dynamic voltage scale (DVS) 693

      24.3.1.4 OS task scheduling 694

      24.3.2 Internode Level 695

      24.3.2.1 Transmission power control 695

      24.3.2.2 Dynamic modulation scaling 696

      24.3.2.3 Link layer optimizations 698

      24.4 Final Remarks 701

      References 702

      25 NETWORK-WIDE STRATEGIES FOR ENERGY EFFICIENCY IN WIRELESS SENSOR NETWORKS 709
      Fla´ via C. Delicato and Paulo F. Pires

      25.1 Introduction 709

      25.2 Data Link Layer 711

      25.2.1 Topology Control Protocols 712

      25.2.2 Energy-Efficient MAC Protocols 714

      25.2.2.1 Scheduled MAC protocols in WSNs 716

      25.2.2.2 Contention-based MAC protocols 717

      25.3 Network Layer 719

      25.3.1 Flat and Hierarchical Protocols 722

      25.4 Transport Layer 725

      25.5 Application Layer 729

      25.5.1 Task Scheduling 729

      25.5.2 Data Aggregation and Data Fusion in WSNs 733

      25.5.2.1 Approaches of data fusion for energy efficiency 735

      25.5.2.2 Data aggregation strategies 736

      25.6 Final Remarks 740

      References 741

      26 ENERGY MANAGEMENT IN HETEROGENEOUS WIRELESS HEALTH CARE NETWORKS 751
      Nima Nikzad, Priti Aghera, Piero Zappi, and Tajana S. Rosing

      26.1 Introduction 751

      26.2 System Model 753

      26.2.1 Health Monitoring Task Model 753

      26.3 Collaborative Distributed Environmental Sensing 755

      26.3.1 Node Neighborhood and Localization Rate 757

      26.3.2 Energy Ratio and Sensing Rate 758

      26.3.3 Duty Cycling and Prediction 759

      26.4 Task Assignment in a Body Area Network 760

      26.4.1 Optimal Task Assignment 760

      26.4.2 Dynamic Task Assignment 762

      26.4.2.1 DynAGreen algorithm 763

      26.4.2.2 DynAGreenLife algorithm 768

      26.5 Results 771

      26.5.1 Collaborative Sensing 771

      26.5.1.1 Results 772

      26.5.2 Dynamic Task Assignment 776

      26.5.2.1 Performance in static conditions 777

      26.5.2.2 Dynamic adaptability 780

      26.6 Conclusion 784

      References 785

      INDEX 787

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account