Description
Book SynopsisThis unique discussion meeting will bring electrochemists, surface scientists and theoreticians together and foster the development of both in situ spectroscopic methods in electrochemistry and theoretical methods which model the electrocatalytic interface. This unique discussion meeting will bring electrochemists, surface scientists and theoreticians together and foster the development of both in situ spectroscopic methods in electrochemistry and theoretical methods which model the electrocatalytic interface. It will be opened with an introductory lecture by Marc Koper from Leiden University in the Netherlands. Discussion sessions: Structure in Electrocatalysis: from nanoparticles to single crystals Spectroscopy and Electrocatalysis Hydrogen oxidation and oxygen reduction Biological electrocatalysis and alcohols as fuels
Table of ContentsSession 1: Structure in Electrocatalysis: from nanoparticles to single crystals -Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method -Bridging the gap between nanoparticles and single-crystal surfaces -Dynamics of oxidation of CO adsorbed on Pt(111) in acid solutions: simultaneous second harmonic generation and reflectance spectroscopy studies -Surface structure and electrochemistry of model electrocatalysts Session 2: Spectroscopy and Electrocatalysis -Mechanistic and synthetic approaches to nitrate and oxygen electroreduction -Surface-enhanced Raman spectroscopy for investigating electrocatalytic systems at real reaction temperature -Molecular structure at electrode/electrolyte solution interfaces related to electrocatalysis -Electrocatalysis, heterogeneous catalysis: the level of overlap -Interplay of co-adsorption and partial charge transfer phenomena modeled in SHG and electrochemical experiments with polytungstates on platinum -A comparative in situ electrochemical-NMR investigation of PtRu nanoparticles supported on diverse carbon nonomaterials Session 3: Hydrogen oxidation and oxygen reduction -On the catalysis of the hydrogen oxidation -Hydrogen evolution on nano-particulate transition metal sulfides -Influence of water on elementary reaction steps in electrocatalysis -Oxygen reduction reaction in PEM - fuel cells -Intrinsic kinetic equation for the ORR -Size and composition distribution dynamics of nanoparticle electrocatalysts probed by Anomalous Small Angle X-ray Scattering (ASAXS) Session 4: Biological electrocatalysis and alcohols as fuels -Redox enzymes - are they the most efficient electrocatalysts? -Surface enhanced infrared difference absorption (SEIDA) spectroscopy: probing the functionality of a (membrane) protein on the monolayer level -Mesoscopic transport effects in electrocatalytic processes -Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes -Electrocatalytic oxidation of ethanol and acetaldehyde on platinum single crystal surfaces