Description

Book Synopsis
Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations.

Trade Review

J.K. Hale, H. Kocak, and H. Buttanri

Dynamics and Bifurcations

"This book takes the reader step by step through the vast subject of dynamical systems. Proceeding from 1 to 2 dimensions and onto higher dimensions in separate self-contained sections, the text is mathematically rigorous yet devoid of excess formalism. A refreshing balance is further achieved by the use of many excellent illustrations and a wealth of worked and unworked examples."—MATHEMATIKA



Table of Contents
I: Dimension One.- 1. Scalar Autonomous Equations.- 1.1. Existence and Uniqueness.- 1.2. Geometry of Flows.- 1.3. Stability of Equilibria.- 1.4. Equations on a Circle.- 2. Elementary Bifurcations.- 2.1. Dependence on Parameters - Examples.- 2.2. The Implicit Function Theorem.- 2.3. Local Perturbations Near Equilibria.- 2.4. An Example on a Circle.- 2.5. Computing Bifurcation Diagrams.- 2.6. Equivalence of Flows.- 3. Scalar Maps.- 3.1. Euler’s Algorithm and Maps.- 3.2. Geometry of Scalar Maps.- 3.3. Bifurcations of Monotone Maps.- 3.4. Period-doubling Bifurcation.- 3.5. An Example: The Logistic Map.- II: Dimension One and One Half.- 4. Scalar Nonautonomous Equations.- 4.1. General Properties of Solutions.- 4.2. Geometry of Periodic Equations.- 4.3. Periodic Equations on a Cylinder.- 4.4. Examples of Periodic Equations.- 4.5. Stability of Periodic Solutions.- 5. Bifurcation of Periodic Equations.- 5.1. Bifurcations of Poincaré Maps.- 5.2. Stability of Nonhyperbolic Periodic Solutions.- 5.3. Perturbations of Vector Fields.- 6. On Tori and Circles.- 6.1. Differential Equations on a Torus.- 6.2. Rotation Number.- 6.3. An Example: The Standard Circle Map.- III: Dimension Two.- 7. Planar Autonomous Systems.- 7.1. “Natural” Examples of Planar Systems.- 7.2. General Properties and Geometry.- 7.3. Product Systems.- 7.4. First Integrals and Conservative Systems.- 7.5. Examples of Elementary Bifurcations.- 8. Linear Systems.- 8.1. Properties of Solutions of Linear Systems.- 8.2. Reduction to Canonical Forms.- 8.3. Qualitative Equivalence in Linear Systems.- 8.4. Bifurcations in Linear Systems.- 8.5. Nonhomogeneous Linear Systems.- 8.6. Linear Systems with 1-periodic Coefficients.- 9. Near Equilibria.- 9.1. Asymptotic Stability from Linearization.- 9.2. Instability from Linearization.- 9.3. Liapunov Functions.- 9.4. An Invariance Principle.- 9.5. Preservation of a Saddle.- 9.6. Flow Equivalence Near Hyperbolic Equilibria.- 9.7. Saddle Connections.- 10. In the Presence of a Zero Eigenvalue.- 10.1. Stability.- 10.2. Bifurcations.- 10.3. Center Manifolds.- 11. In the Presence of Purely Imaginary Eigenvalues.- 11.1. Stability.- 11.2. Poincaré-Andronov-Hopf Bifurcation.- 11.3. Computing Bifurcation Curves.- 12. Periodic Orbits.- 12.1. Poincaré-Bendixson Theorem.- 12.2. Stability of Periodic Orbits.- 12.3. Local Bifurcations of Periodic Orbits.- 12.4. A Homoclinic Bifurcation.- 13. All Planar Things Considered.- 13.1. Structurally Stable Vector Fields.- 13.2. Dissipative Systems.- 13.3. One-parameter Generic Bifurcations.- 13.4. Bifurcations in the Presence of Symmetry.- 13.5. Local Two-parameter Bifurcations.- 14- Conservative and Gradient Systems.- 14.1. Second-order Conservative Systems.- 14.2. Bifurcations in Conservative Systems.- 14.3. Gradient Vector Fields.- 15. Planar Maps.- 15.1. Linear Maps.- 15.2. Near Fixed Points.- 15.3. Numerical Algorithms and Maps.- 15.4. Saddle Node and Period Doubling.- 15.5. Poincaré-Andronov-Hopf Bifurcation.- 15.6. Area-preserving Maps.- IV: Higher Dimensions.- 16. Dimension Two and One Half.- 16.1. Forced Van der Pol.- 16.2. Forced Duffing.- 16.3. Near a Transversal Homoclinic Point.- 16.4. Forced and Damped Duffing.- 17. Dimension Three.- 17.1. Period Doubling.- 17.2. Bifurcation to Invariant Torus.- 17.3. Silnikov Orbits.- 17.4. The Lorenz Equations.- 18. Dimension Four.- 18.1. Integrable Hamiltonians.- 18.2. A Nonintegrable Hamiltonian.- Farewell.- APPENDIX: A Catalogue of Fundamental Theorems.- References.

Dynamics and Bifurcations

Product form

£68.88

Includes FREE delivery

RRP £72.50 – you save £3.62 (4%)

Order before 4pm tomorrow for delivery by Mon 19 Jan 2026.

A Hardback by Jack K. Hale, H. Buttanri, Hüseyin Kocak

15 in stock


    View other formats and editions of Dynamics and Bifurcations by Jack K. Hale

    Publisher: Springer New York
    Publication Date: 12/6/1991 12:00:00 AM
    ISBN13: 9780387971414, 978-0387971414
    ISBN10: 0387971416

    Description

    Book Synopsis
    Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations.

    Trade Review

    J.K. Hale, H. Kocak, and H. Buttanri

    Dynamics and Bifurcations

    "This book takes the reader step by step through the vast subject of dynamical systems. Proceeding from 1 to 2 dimensions and onto higher dimensions in separate self-contained sections, the text is mathematically rigorous yet devoid of excess formalism. A refreshing balance is further achieved by the use of many excellent illustrations and a wealth of worked and unworked examples."—MATHEMATIKA



    Table of Contents
    I: Dimension One.- 1. Scalar Autonomous Equations.- 1.1. Existence and Uniqueness.- 1.2. Geometry of Flows.- 1.3. Stability of Equilibria.- 1.4. Equations on a Circle.- 2. Elementary Bifurcations.- 2.1. Dependence on Parameters - Examples.- 2.2. The Implicit Function Theorem.- 2.3. Local Perturbations Near Equilibria.- 2.4. An Example on a Circle.- 2.5. Computing Bifurcation Diagrams.- 2.6. Equivalence of Flows.- 3. Scalar Maps.- 3.1. Euler’s Algorithm and Maps.- 3.2. Geometry of Scalar Maps.- 3.3. Bifurcations of Monotone Maps.- 3.4. Period-doubling Bifurcation.- 3.5. An Example: The Logistic Map.- II: Dimension One and One Half.- 4. Scalar Nonautonomous Equations.- 4.1. General Properties of Solutions.- 4.2. Geometry of Periodic Equations.- 4.3. Periodic Equations on a Cylinder.- 4.4. Examples of Periodic Equations.- 4.5. Stability of Periodic Solutions.- 5. Bifurcation of Periodic Equations.- 5.1. Bifurcations of Poincaré Maps.- 5.2. Stability of Nonhyperbolic Periodic Solutions.- 5.3. Perturbations of Vector Fields.- 6. On Tori and Circles.- 6.1. Differential Equations on a Torus.- 6.2. Rotation Number.- 6.3. An Example: The Standard Circle Map.- III: Dimension Two.- 7. Planar Autonomous Systems.- 7.1. “Natural” Examples of Planar Systems.- 7.2. General Properties and Geometry.- 7.3. Product Systems.- 7.4. First Integrals and Conservative Systems.- 7.5. Examples of Elementary Bifurcations.- 8. Linear Systems.- 8.1. Properties of Solutions of Linear Systems.- 8.2. Reduction to Canonical Forms.- 8.3. Qualitative Equivalence in Linear Systems.- 8.4. Bifurcations in Linear Systems.- 8.5. Nonhomogeneous Linear Systems.- 8.6. Linear Systems with 1-periodic Coefficients.- 9. Near Equilibria.- 9.1. Asymptotic Stability from Linearization.- 9.2. Instability from Linearization.- 9.3. Liapunov Functions.- 9.4. An Invariance Principle.- 9.5. Preservation of a Saddle.- 9.6. Flow Equivalence Near Hyperbolic Equilibria.- 9.7. Saddle Connections.- 10. In the Presence of a Zero Eigenvalue.- 10.1. Stability.- 10.2. Bifurcations.- 10.3. Center Manifolds.- 11. In the Presence of Purely Imaginary Eigenvalues.- 11.1. Stability.- 11.2. Poincaré-Andronov-Hopf Bifurcation.- 11.3. Computing Bifurcation Curves.- 12. Periodic Orbits.- 12.1. Poincaré-Bendixson Theorem.- 12.2. Stability of Periodic Orbits.- 12.3. Local Bifurcations of Periodic Orbits.- 12.4. A Homoclinic Bifurcation.- 13. All Planar Things Considered.- 13.1. Structurally Stable Vector Fields.- 13.2. Dissipative Systems.- 13.3. One-parameter Generic Bifurcations.- 13.4. Bifurcations in the Presence of Symmetry.- 13.5. Local Two-parameter Bifurcations.- 14- Conservative and Gradient Systems.- 14.1. Second-order Conservative Systems.- 14.2. Bifurcations in Conservative Systems.- 14.3. Gradient Vector Fields.- 15. Planar Maps.- 15.1. Linear Maps.- 15.2. Near Fixed Points.- 15.3. Numerical Algorithms and Maps.- 15.4. Saddle Node and Period Doubling.- 15.5. Poincaré-Andronov-Hopf Bifurcation.- 15.6. Area-preserving Maps.- IV: Higher Dimensions.- 16. Dimension Two and One Half.- 16.1. Forced Van der Pol.- 16.2. Forced Duffing.- 16.3. Near a Transversal Homoclinic Point.- 16.4. Forced and Damped Duffing.- 17. Dimension Three.- 17.1. Period Doubling.- 17.2. Bifurcation to Invariant Torus.- 17.3. Silnikov Orbits.- 17.4. The Lorenz Equations.- 18. Dimension Four.- 18.1. Integrable Hamiltonians.- 18.2. A Nonintegrable Hamiltonian.- Farewell.- APPENDIX: A Catalogue of Fundamental Theorems.- References.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account