Description

Book Synopsis

This book includes a novel motif discovery for time series, KITE (ill-Known motIf discovery in Time sEries data), to identify ill-known motifs transformed by affine mappings such as translation, uniform scaling, reflection, stretch, and squeeze mappings. Additionally, such motifs may be covered with noise or have variable lengths. Besides KITE’s contribution to motif discovery, new avenues for the signal and image processing domains are explored and created. The core of KITE is an invariant representation method called Analytic Complex Quad Tree Wavelet Packet transform (ACQTWP). This wavelet transform applies to motif discovery as well as to several signal and image processing tasks. The efficiency of KITE is demonstrated with data sets from various domains and compared with state-of-the-art algorithms, where KITE yields the best outcomes.



Trade Review
“The book under review provides one such vantage point, and anyone whose work involves finding patterns in large amounts of data should take heed. … For those well versed in the mathematics of harmonics and waves, the book should prove very useful in showing how these theories can be applied to data series. But even those who are not specialists in this area, such as myself, can still gain many ideas from this useful tome.” (Eugene Callahan, Computing Reviews, October 11, 2022)

Table of Contents
Introduction.- Preliminaries.- General Principles of Time Series Motif Discovery.- State of the Art in Time Series Motif Discovery.- Distortion-Invariant Motif Discovery.- Evaluation.- Conclusion and Outlook.- Appendices A-D.

Discovery of Ill–Known Motifs in Time Series Data

Product form

£62.99

Includes FREE delivery

RRP £69.99 – you save £7.00 (10%)

Order before 4pm today for delivery by Sat 10 Jan 2026.

A Paperback by Sahar Deppe

1 in stock


    View other formats and editions of Discovery of Ill–Known Motifs in Time Series Data by Sahar Deppe

    Publisher: Springer Fachmedien Wiesbaden
    Publication Date: 02/10/2021
    ISBN13: 9783662642146, 978-3662642146
    ISBN10: 366264214X

    Description

    Book Synopsis

    This book includes a novel motif discovery for time series, KITE (ill-Known motIf discovery in Time sEries data), to identify ill-known motifs transformed by affine mappings such as translation, uniform scaling, reflection, stretch, and squeeze mappings. Additionally, such motifs may be covered with noise or have variable lengths. Besides KITE’s contribution to motif discovery, new avenues for the signal and image processing domains are explored and created. The core of KITE is an invariant representation method called Analytic Complex Quad Tree Wavelet Packet transform (ACQTWP). This wavelet transform applies to motif discovery as well as to several signal and image processing tasks. The efficiency of KITE is demonstrated with data sets from various domains and compared with state-of-the-art algorithms, where KITE yields the best outcomes.



    Trade Review
    “The book under review provides one such vantage point, and anyone whose work involves finding patterns in large amounts of data should take heed. … For those well versed in the mathematics of harmonics and waves, the book should prove very useful in showing how these theories can be applied to data series. But even those who are not specialists in this area, such as myself, can still gain many ideas from this useful tome.” (Eugene Callahan, Computing Reviews, October 11, 2022)

    Table of Contents
    Introduction.- Preliminaries.- General Principles of Time Series Motif Discovery.- State of the Art in Time Series Motif Discovery.- Distortion-Invariant Motif Discovery.- Evaluation.- Conclusion and Outlook.- Appendices A-D.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account