Description

Book Synopsis


Table of Contents
Chapter 1: Introduction to Differential Equations

Differential Equation Models. The Derivative. Integration.

Chapter 2: First-Order Equations

Differential Equations and Solutions. Solutions to Separable Equations. Models of Motion. Linear Equations.

Mixing Problems. Exact Differential Equations. Existence and Uniqueness of Solutions. Dependence of Solutions on Initial Conditions. Autonomous Equations and Stability.

Project 2.10 The Daredevil Skydiver.

Chapter 3: Modeling and Applications

Modeling Population Growth. Models and the Real World. Personal Finance. Electrical Circuits. Project 3.5 The Spruce Budworm. Project 3.6 Social Security, Now or Later.

Chapter 4: Second-Order Equations

Definitions and Examples. Second-Order Equations and Systems. Linear, Homogeneous Equations with Constant Coefficients. Harmonic Motion. Inhomogeneous Equations; the Method of Undetermined Coefficients. Variation of Parameters. Forced Harmonic Motion. Project 4.8 Nonlinear Oscillators.

Chapter 5: The Laplace Transform

The Definition of the Laplace Transform. Basic Properties of the Laplace Transform 241. The Inverse Laplace Transform

Using the Laplace Transform to Solve Differential Equations. Discontinuous Forcing Terms. The Delta Function. Convolutions. Summary. Project 5.9 Forced Harmonic Oscillators.

Chapter 6: Numerical Methods

Euler’s Method. Runge-Kutta Methods. Numerical Error Comparisons. Practical Use of Solvers. A Cautionary Tale.

Project 6.6 Numerical Error Comparison.

Chapter 7: Matrix Algebra

Vectors and Matrices. Systems of Linear Equations with Two or Three Variables. Solving Systems of Equations. Homogeneous and Inhomogeneous Systems. Bases of a subspace. Square Matrices. Determinants.

Chapter 8: An Introduction to Systems

Definitions and Examples. Geometric Interpretation of Solutions. Qualitative Analysis. Linear Systems. Properties of Linear Systems. Project 8.6 Long-Term Behavior of Solutions.

Chapter 9: Linear Systems with Constant Coefficients

Overview of the Technique. Planar Systems. Phase Plane Portraits. The Trace-Determinant Plane. Higher Dimensional Systems. The Exponential of a Matrix. Qualitative Analysis of Linear Systems. Higher-Order Linear Equations. Inhomogeneous Linear Systems. Project 9.10 Phase Plane Portraits. Project 9.11 Oscillations of Linear Molecules.

Chapter 10: Nonlinear Systems

The Linearization of a Nonlinear System. Long-Term Behavior of Solutions. Invariant Sets and the Use of Nullclines. Long-Term Behavior of Solutions to Planar Systems. Conserved Quantities. Nonlinear Mechanics. The Method of Lyapunov. Predator—Prey Systems. Project 10.9 Human Immune Response to Infectious Disease. Project 10.10 Analysis of Competing Species.

Chapter 11: Series Solutions to Differential Equations

Review of Power Series. Series Solutions Near Ordinary Points. Legendre’s Equation. Types of Singular Points–Euler’s Equation. Series Solutions Near Regular Singular Points. Series Solutions Near Regular Singular Points – the General Case. Bessel’s Equation and Bessel Functions.

Differential Equations Classic Version

Product form

£114.10

Includes FREE delivery

Order before 4pm today for delivery by Tue 6 Jan 2026.

A Paperback / softback by John Polking, Al Boggess, David Arnold

15 in stock


    View other formats and editions of Differential Equations Classic Version by John Polking

    Publisher: Pearson Education (US)
    Publication Date: 07/03/2017
    ISBN13: 9780134689586, 978-0134689586
    ISBN10: 0134689585

    Description

    Book Synopsis


    Table of Contents
    Chapter 1: Introduction to Differential Equations

    Differential Equation Models. The Derivative. Integration.

    Chapter 2: First-Order Equations

    Differential Equations and Solutions. Solutions to Separable Equations. Models of Motion. Linear Equations.

    Mixing Problems. Exact Differential Equations. Existence and Uniqueness of Solutions. Dependence of Solutions on Initial Conditions. Autonomous Equations and Stability.

    Project 2.10 The Daredevil Skydiver.

    Chapter 3: Modeling and Applications

    Modeling Population Growth. Models and the Real World. Personal Finance. Electrical Circuits. Project 3.5 The Spruce Budworm. Project 3.6 Social Security, Now or Later.

    Chapter 4: Second-Order Equations

    Definitions and Examples. Second-Order Equations and Systems. Linear, Homogeneous Equations with Constant Coefficients. Harmonic Motion. Inhomogeneous Equations; the Method of Undetermined Coefficients. Variation of Parameters. Forced Harmonic Motion. Project 4.8 Nonlinear Oscillators.

    Chapter 5: The Laplace Transform

    The Definition of the Laplace Transform. Basic Properties of the Laplace Transform 241. The Inverse Laplace Transform

    Using the Laplace Transform to Solve Differential Equations. Discontinuous Forcing Terms. The Delta Function. Convolutions. Summary. Project 5.9 Forced Harmonic Oscillators.

    Chapter 6: Numerical Methods

    Euler’s Method. Runge-Kutta Methods. Numerical Error Comparisons. Practical Use of Solvers. A Cautionary Tale.

    Project 6.6 Numerical Error Comparison.

    Chapter 7: Matrix Algebra

    Vectors and Matrices. Systems of Linear Equations with Two or Three Variables. Solving Systems of Equations. Homogeneous and Inhomogeneous Systems. Bases of a subspace. Square Matrices. Determinants.

    Chapter 8: An Introduction to Systems

    Definitions and Examples. Geometric Interpretation of Solutions. Qualitative Analysis. Linear Systems. Properties of Linear Systems. Project 8.6 Long-Term Behavior of Solutions.

    Chapter 9: Linear Systems with Constant Coefficients

    Overview of the Technique. Planar Systems. Phase Plane Portraits. The Trace-Determinant Plane. Higher Dimensional Systems. The Exponential of a Matrix. Qualitative Analysis of Linear Systems. Higher-Order Linear Equations. Inhomogeneous Linear Systems. Project 9.10 Phase Plane Portraits. Project 9.11 Oscillations of Linear Molecules.

    Chapter 10: Nonlinear Systems

    The Linearization of a Nonlinear System. Long-Term Behavior of Solutions. Invariant Sets and the Use of Nullclines. Long-Term Behavior of Solutions to Planar Systems. Conserved Quantities. Nonlinear Mechanics. The Method of Lyapunov. Predator—Prey Systems. Project 10.9 Human Immune Response to Infectious Disease. Project 10.10 Analysis of Competing Species.

    Chapter 11: Series Solutions to Differential Equations

    Review of Power Series. Series Solutions Near Ordinary Points. Legendre’s Equation. Types of Singular Points–Euler’s Equation. Series Solutions Near Regular Singular Points. Series Solutions Near Regular Singular Points – the General Case. Bessel’s Equation and Bessel Functions.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account