Description

Book Synopsis

This book is divided into two parts, the first one to study the theory of differentiable functions between Banach spaces and the second to study the differential form formalism and to address the Stokes' Theorem and its applications. Related to the first part, there is an introduction to the content of Linear Bounded Operators in Banach Spaces with classic examples of compact and Fredholm operators, this aiming to define the derivative of Fréchet and to give examples in Variational Calculus and to extend the results to Fredholm maps. The Inverse Function Theorem is explained in full details to help the reader to understand the proof details and its motivations. The inverse function theorem and applications make up this first part. The text contains an elementary approach to Vector Fields and Flows, including the Frobenius Theorem. The Differential Forms are introduced and applied to obtain the Stokes Theorem and to define De Rham cohomology groups. As an application, the final chapter contains an introduction to the Harmonic Functions and a geometric approach to Maxwell's equations of electromagnetism.





Trade Review
“A specific feature of the book is the abundance of examples from mechanics, physics, calculus of variations, illustrating the abstract concepts introduced in the main text. … There are a lot of exercises spread through the book, some elementary, while others are more advanced. The book can be used as supplementary material for undergraduate or graduate level courses, as well as by the students in physics interested in a mathematical treatment of some important problems in their domain.” (Stefan Cobzaş, zbMATH 1479.46001, 2022)

Table of Contents
Introduction.- Chapter 1. Differentiation in R^n.- Chapter 2. Linear Operators in Banach Spaces.- Chapter 3. Differentiation in Banach Spaces.- Chapter 4. Vector Fields.- Chapter 5. Vectors Integration, Potential Theory.- Chapter 6. Differential Forms, Stoke’s Theorem.- Chapter 7. Applications to the Stoke’s Theorem.- Appendix A. Basics of Analysis.- Appendix B. Differentiable Manifolds, Lie Groups.- Appendix C. Tensor Algebra.- Bibliography.- Index.

Differentiability in Banach Spaces, Differential

Product form

£52.24

Includes FREE delivery

RRP £54.99 – you save £2.75 (5%)

Order before 4pm today for delivery by Thu 18 Dec 2025.

A Hardback by Celso Melchiades Doria

15 in stock


    View other formats and editions of Differentiability in Banach Spaces, Differential by Celso Melchiades Doria

    Publisher: Springer Nature Switzerland AG
    Publication Date: 20/07/2021
    ISBN13: 9783030778330, 978-3030778330
    ISBN10: 3030778339

    Description

    Book Synopsis

    This book is divided into two parts, the first one to study the theory of differentiable functions between Banach spaces and the second to study the differential form formalism and to address the Stokes' Theorem and its applications. Related to the first part, there is an introduction to the content of Linear Bounded Operators in Banach Spaces with classic examples of compact and Fredholm operators, this aiming to define the derivative of Fréchet and to give examples in Variational Calculus and to extend the results to Fredholm maps. The Inverse Function Theorem is explained in full details to help the reader to understand the proof details and its motivations. The inverse function theorem and applications make up this first part. The text contains an elementary approach to Vector Fields and Flows, including the Frobenius Theorem. The Differential Forms are introduced and applied to obtain the Stokes Theorem and to define De Rham cohomology groups. As an application, the final chapter contains an introduction to the Harmonic Functions and a geometric approach to Maxwell's equations of electromagnetism.





    Trade Review
    “A specific feature of the book is the abundance of examples from mechanics, physics, calculus of variations, illustrating the abstract concepts introduced in the main text. … There are a lot of exercises spread through the book, some elementary, while others are more advanced. The book can be used as supplementary material for undergraduate or graduate level courses, as well as by the students in physics interested in a mathematical treatment of some important problems in their domain.” (Stefan Cobzaş, zbMATH 1479.46001, 2022)

    Table of Contents
    Introduction.- Chapter 1. Differentiation in R^n.- Chapter 2. Linear Operators in Banach Spaces.- Chapter 3. Differentiation in Banach Spaces.- Chapter 4. Vector Fields.- Chapter 5. Vectors Integration, Potential Theory.- Chapter 6. Differential Forms, Stoke’s Theorem.- Chapter 7. Applications to the Stoke’s Theorem.- Appendix A. Basics of Analysis.- Appendix B. Differentiable Manifolds, Lie Groups.- Appendix C. Tensor Algebra.- Bibliography.- Index.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account