Description

Book Synopsis

From data collection to evaluation and visualization of prediction results, this book provides a comprehensive overview of the process of predicting demand for retailers. Each step is illustrated with the relevant code and implementation details to demystify how historical data can be leveraged to predict future demand. The tools and methods presented can be applied to most retail settings, both online and brick-and-mortar, such as fashion, electronics, groceries, and furniture.

This book is intended to help students in business analytics and data scientists better master how to leverage data for predicting demand in retail applications. It can also be used as a guide for supply chain practitioners who are interested in predicting demand. It enables readers to understand how to leverage data to predict future demand, how to clean and pre-process the data to make it suitable for predictive analytics, what the common caveats are in terms of implementation and how to assess prediction accuracy.



Table of Contents
1. Introduction.- 2. Data Pre-Processing and Modeling Factors.- 3. Common Demand Prediction Methods.- 4. Tree-Based Methods.- 5. Clustering Techniques.- 6. Evaluation and Visualization.- 7. More Advanced Methods.- 8. Conclusion and Advanced Topics.

Demand Prediction in Retail: A Practical Guide to

Product form

£75.99

Includes FREE delivery

RRP £79.99 – you save £4.00 (5%)

Order before 4pm tomorrow for delivery by Wed 24 Dec 2025.

A Hardback by Maxime C. Cohen, Paul-Emile Gras, Arthur Pentecoste

1 in stock


    View other formats and editions of Demand Prediction in Retail: A Practical Guide to by Maxime C. Cohen

    Publisher: Springer Nature Switzerland AG
    Publication Date: 22/12/2021
    ISBN13: 9783030858544, 978-3030858544
    ISBN10: 3030858545

    Description

    Book Synopsis

    From data collection to evaluation and visualization of prediction results, this book provides a comprehensive overview of the process of predicting demand for retailers. Each step is illustrated with the relevant code and implementation details to demystify how historical data can be leveraged to predict future demand. The tools and methods presented can be applied to most retail settings, both online and brick-and-mortar, such as fashion, electronics, groceries, and furniture.

    This book is intended to help students in business analytics and data scientists better master how to leverage data for predicting demand in retail applications. It can also be used as a guide for supply chain practitioners who are interested in predicting demand. It enables readers to understand how to leverage data to predict future demand, how to clean and pre-process the data to make it suitable for predictive analytics, what the common caveats are in terms of implementation and how to assess prediction accuracy.



    Table of Contents
    1. Introduction.- 2. Data Pre-Processing and Modeling Factors.- 3. Common Demand Prediction Methods.- 4. Tree-Based Methods.- 5. Clustering Techniques.- 6. Evaluation and Visualization.- 7. More Advanced Methods.- 8. Conclusion and Advanced Topics.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account