Description

Book Synopsis
An engaging and accessible introduction to deep learning perfect for students and professionals In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples. Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find: Thorough introductions to deep learning and deep learning toolsComprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architecturesPractical discussions of recurrent neural networks and non-supervised approaches to deep learningFulsome treatments of generative adversarial networks as well as deep Bayesian neural networks Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.

Deep Learning

Product form

£67.50

Includes FREE delivery

RRP £75.00 – you save £7.50 (10%)

Order before 4pm tomorrow for delivery by Mon 12 Jan 2026.

A Hardback by Aswathy Rajendra Kurup

1 in stock


    View other formats and editions of Deep Learning by Aswathy Rajendra Kurup

    Publisher: John Wiley & Sons Inc
    Publication Date: 8/8/2024
    ISBN13: 9781119861867, 978-1119861867
    ISBN10: 1119861861
    Also in:
    Machine learning

    Description

    Book Synopsis
    An engaging and accessible introduction to deep learning perfect for students and professionals In Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples. Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find: Thorough introductions to deep learning and deep learning toolsComprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architecturesPractical discussions of recurrent neural networks and non-supervised approaches to deep learningFulsome treatments of generative adversarial networks as well as deep Bayesian neural networks Perfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account