Provides an integrated presentation of basic research (in phonetics/linguistics and humanities) with state-of-the-art
Table of Contents
Preface xiii Acknowledgements xv
List of Abbreviations xvii
Part I Foundations
1 Introduction 3
1.1 What is Computational Paralinguistics? A First Approximation 3
1.2 History and Subject Area 7
1.3 Form versus Function 10
1.4 Further Aspects 12
1.4.1 The Synthesis of Emotion and Personality 12
1.4.2 Multimodality: Analysis and Generation 13
1.4.3 Applications, Usability and Ethics 15
1.5 Summary and Structure of the Book 17
References 18
2 Taxonomies 21
2.1 Traits versus States 21
2.2 Acted versus Spontaneous 25
2.3 Complex versus Simple 30
2.4 Measured versus Assessed 31
2.5 Categorical versus Continuous 33
2.6 Felt versus Perceived 35
2.7 Intentional versus Instinctual 37
2.8 Consistent versus Discrepant 38
2.9 Private versus Social 39
2.10 Prototypical versus Peripheral 40
2.11 Universal versus Culture-Specific 41
2.12 Unimodal versus Multimodal 43
2.13 All These Taxonomies – So What? 44
2.13.1 Emotion Data: The FAU AEC 45
2.13.2 Non-native Data: The C-AuDiT corpus 47
References 48
3 Aspects of Modelling 53
3.1 Theories and Models of Personality 53
3.2 Theories and Models of Emotion and Affect 55
3.3 Type and Segmentation of Units 58
3.4 Typical versus Atypical Speech 60
3.5 Context 61
3.6 Lab versus Life, or Through the Looking Glass 62
3.7 Sheep and Goats, or Single Instance Decision versus Cumulative Evidence and Overall Performance 64
3.8 The Few and the Many, or How to Analyse a Hamburger 65
3.9 Reifications, and What You are Looking for is What You Get 67
3.10 Magical Numbers versus Sound Reasoning 68
References 74
4 Formal Aspects 79
4.1 The Linguistic Code and Beyond 79
4.2 The Non-Distinctive Use of Phonetic Elements 81
4.2.1 Segmental Level: The Case of /r/ Variants 81
4.2.2 Supra-segmental Level: The Case of Pitch and Fundamental Frequency – and of Other Prosodic Parameters 82
4.2.3 In Between: The Case of Other Voice Qualities, Especially Laryngealisation 86
4.3 The Non-Distinctive Use of Linguistics Elements 91
4.3.1 Words and Word Classes 91
4.3.2 Phrase Level: The Case of Filler Phrases and Hedges 94
4.4 Disfluencies 96
4.5 Non-Verbal, Vocal Events 98
4.6 Common Traits of Formal Aspects 100
References 101
5 Functional Aspects 107
5.1 Biological Trait Primitives 109
5.1.1 Speaker Characteristics 111
5.2 Cultural Trait Primitives 112
5.2.1 Speech Characteristics 114
5.3 Personality 115
5.4 Emotion and Affect 119
5.5 Subjectivity and Sentiment Analysis 123
5.6 Deviant Speech 124
5.6.1 Pathological Speech 125
5.6.2 Temporarily Deviant Speech 129
5.6.3 Non-native Speech 130
5.7 Social Signals 131
5.8 Discrepant Communication 135
5.8.1 Indirect Speech, Irony, and Sarcasm 136
5.8.2 Deceptive Speech 138
5.8.3 Off-Talk 139
5.9 Common Traits of Functional Aspects 140
References 141
6 Corpus Engineering 159
6.1 Annotation 160
6.1.1 Assessment of Annotations 161
6.1.2 New Trends 164
6.2 Corpora and Benchmarks: Some Examples 164
6.2.1 FAU Aibo Emotion Corpus 165
6.2.2 aGender Corpus 165
6.2.3 TUM AVIC Corpus 166
6.2.4 Alcohol Language Corpus 168
6.2.5 Sleepy Language Corpus 168
6.2.6 Speaker Personality Corpus 169
6.2.7 Speaker Likability Database 170
6.2.8 NKI CCRT Speech Corpus 171
6.2.9 TIMIT Database 171
6.2.10 Final Remarks on Databases 172
References 173
Part II Modelling
7 Computational Modelling of Paralinguistics: Overview 179
References 183
8 Acoustic Features 185
8.1 Digital Signal Representation 185
8.2 Short Time Analysis 187
8.3 Acoustic Segmentation 190
8.4 Continuous Descriptors 190
8.4.1 Intensity 190
8.4.2 Zero Crossings 191
8.4.3 Autocorrelation 192
8.4.4 Spectrum and Cepstrum 194
8.4.5 Linear Prediction 198
8.4.6 Line Spectral Pairs 202
8.4.7 Perceptual Linear Prediction 203
8.4.8 Formants 205
8.4.9 Fundamental Frequency and Voicing Probability 207
8.4.10 Jitter and Shimmer 212
8.4.11 Derived Low-Level Descriptors 214
References 214
9 Linguistic Features 217
9.1 Textual Descriptors 217
9.2 Preprocessing 218
9.3 Reduction 218
9.3.1 Stopping 218
9.3.2 Stemming 219
9.3.3 Tagging 219
9.4 Modelling 220
9.4.1 Vector Space Modelling 220
9.4.2 On-line Knowledge 222
References 227
10 Supra-segmental Features 230
10.1 Functionals 231
10.2 Feature Brute-Forcing 232
10.3 Feature Stacking 233
References 234
11 Machine-Based Modelling 235
11.1 Feature Relevance Analysis 235
11.2 Machine Learning 238
11.2.1 Static Classification 238
11.2.2 Dynamic Classification: Hidden Markov Models 256
11.2.3 Regression 262
11.3 Testing Protocols 264
11.3.1 Partitioning 264
11.3.2 Balancing 266
11.3.3 Performance Measures 267
11.3.4 Result Interpretation 272
References 277
12 System Integration and Application 281
12.1 Distributed Processing 281
12.2 Autonomous and Collaborative Learning 284
12.3 Confidence Measures 286
References 287
13 ‘Hands-On’: Existing Toolkits and Practical Tutorial 289
13.1 Related Toolkits 289
13.2 openSMILE 290
13.2.1 Available Feature Extractors 293
13.3 Practical Computational Paralinguistics How-to 294
13.3.1 Obtaining and Installing openSMILE 295
13.3.2 Extracting Features 295
13.3.3 Classification and Regression 302
References 303
14 Epilogue 304
Appendix 307
A.1 openSMILE Feature Sets Used at Interspeech Challenges 307
A.2 Feature Encoding Scheme 310
References 314
Index 315