Description

Book Synopsis


Table of Contents

Introduction xv

Assessment Test xxii

Chapter 1 Today’s Data Analyst 1

Welcome to the World of Analytics 2

Data 2

Storage 3

Computing Power 4

Careers in Analytics 5

The Analytics Process 6

Data Acquisition 7

Cleaning and Manipulation 7

Analysis 8

Visualization 8

Reporting and Communication 8

Analytics Techniques 10

Descriptive Analytics 10

Predictive Analytics 11

Prescriptive Analytics 11

Machine Learning, Artificial Intelligence, and Deep Learning 11

Data Governance 13

Analytics Tools 13

Summary 15

Chapter 2 Understanding Data 17

Exploring Data Types 18

Structured Data Types 20

Unstructured Data Types 31

Categories of Data 36

Common Data Structures 39

Structured Data 39

Unstructured Data 41

Semi-structured

Data 42

Common File Formats 42

Text Files 42

JavaScript Object Notation 44

Extensible Markup Language (XML) 45

HyperText Markup Language (HTML) 47

Summary 48

Exam Essentials 49

Review Questions 51

Chapter 3 Databases and Data Acquisition 57

Exploring Databases 58

The Relational Model 59

Relational Databases 62

Nonrelational Databases 68

Database Use Cases 71

Online Transactional Processing 71

Online Analytical Processing 74

Schema Concepts 75

Data Acquisition Concepts 81

Integration 81

Data Collection Methods 83

Working with Data 88

Data Manipulation 89

Query Optimization 96

Summary 99

Exam Essentials 100

Review Questions 101

Chapter 4 Data Quality 105

Data Quality Challenges 106

Duplicate Data 106

Redundant Data 107

Missing Values 110

Invalid Data 111

Nonparametric data 112

Data Outliers 113

Specification Mismatch 114

Data Type Validation 114

Data Manipulation Techniques 116

Recoding Data 116

Derived Variables 117

Data Merge 118

Data Blending 119

Concatenation 121

Data Append 121

Imputation 122

Reduction 124

Aggregation 126

Transposition 127

Normalization 128

Parsing/String Manipulation 130

Managing Data Quality 132

Circumstances to Check for Quality 132

Automated Validation 136

Data Quality Dimensions 136

Data Quality Rules and Metrics 140

Methods to Validate Quality 142

Summary 144

Exam Essentials 145

Review Questions 146

Chapter 5 Data Analysis and Statistics 151

Fundamentals of Statistics 152

Descriptive Statistics 155

Measures of Frequency 155

Measures of Central Tendency 160

Measures of Dispersion 164

Measures of Position 173

Inferential Statistics 175

Confidence Intervals 175

Hypothesis Testing 179

Simple Linear Regression 186

Analysis Techniques 190

Determine Type of Analysis 190

Types of Analysis 191

Exploratory Data Analysis 192

Summary 192

Exam Essentials 194

Review Questions 196

Chapter 6 Data Analytics Tools 201

Spreadsheets 202

Microsoft Excel 203

Programming Languages 205

R 205

Python 206

Structured Query Language (SQL) 208

Statistics Packages 209

IBM SPSS 210

SAS 211

Stata 211

Minitab 212

Machine Learning 212

IBM SPSS Modeler 213

RapidMiner 214

Analytics Suites 217

IBM Cognos 217

Power BI 218

MicroStrategy 219

Domo 220

Datorama 221

AWS QuickSight 222

Tableau 222

Qlik 224

BusinessObjects 225

Summary 225

Exam Essentials 225

Review Questions 227

Chapter 7 Data Visualization with Reports and Dashboards 231

Understanding Business Requirements 232

Understanding Report Design Elements 235

Report Cover Page 236

Executive Summary 237

Design Elements 239

Documentation Elements 244

Understanding Dashboard Development Methods 247

Consumer Types 247

Data Source Considerations 248

Data Type Considerations 249

Development Process 250

Delivery Considerations 250

Operational Considerations 252

Exploring Visualization Types 252

Charts 252

Maps 258

Waterfall 264

Infographic 266

Word Cloud 267

Comparing Report Types 268

Static and Dynamic 268

Ad Hoc 269

Self-Service (On-Demand) 269

Recurring Reports 269

Tactical and Research 270

Summary 271

Exam Essentials 272

Review Questions 274

Chapter 8 Data Governance 279

Data Governance Concepts 280

Data Governance Roles 281

Access Requirements 281

Security Requirements 286

Storage Environment Requirements 289

Use Requirements 291

Entity Relationship Requirements 292

Data Classification Requirements 292

Jurisdiction Requirements 297

Breach Reporting Requirements 298

Understanding Master Data Management 299

Processes 300

Circumstances 301

Summary 303

Exam Essentials 304

Review Questions 306

Appendix Answers to the Review Questions 311

Chapter 2: Understanding Data 312

Chapter 3: Databases and Data Acquisition 314

Chapter 4: Data Quality 315

Chapter 5: Data Analysis and Statistics 317

Chapter 6: Data Analytics Tools 319

Chapter 7: Data Visualization with Reports and Dashboards 322

Chapter 8: Data Governance 323

Index 327

CompTIA Data Study Guide

Product form

£42.75

Includes FREE delivery

RRP £47.50 – you save £4.75 (10%)

Order before 4pm today for delivery by Mon 26 Jan 2026.

A Paperback / softback by Mike Chapple, Sharif Nijim

Out of stock


    View other formats and editions of CompTIA Data Study Guide by Mike Chapple

    Publisher: John Wiley & Sons Inc
    Publication Date: 23/05/2022
    ISBN13: 9781119845256, 978-1119845256
    ISBN10: 1119845254

    Description

    Book Synopsis


    Table of Contents

    Introduction xv

    Assessment Test xxii

    Chapter 1 Today’s Data Analyst 1

    Welcome to the World of Analytics 2

    Data 2

    Storage 3

    Computing Power 4

    Careers in Analytics 5

    The Analytics Process 6

    Data Acquisition 7

    Cleaning and Manipulation 7

    Analysis 8

    Visualization 8

    Reporting and Communication 8

    Analytics Techniques 10

    Descriptive Analytics 10

    Predictive Analytics 11

    Prescriptive Analytics 11

    Machine Learning, Artificial Intelligence, and Deep Learning 11

    Data Governance 13

    Analytics Tools 13

    Summary 15

    Chapter 2 Understanding Data 17

    Exploring Data Types 18

    Structured Data Types 20

    Unstructured Data Types 31

    Categories of Data 36

    Common Data Structures 39

    Structured Data 39

    Unstructured Data 41

    Semi-structured

    Data 42

    Common File Formats 42

    Text Files 42

    JavaScript Object Notation 44

    Extensible Markup Language (XML) 45

    HyperText Markup Language (HTML) 47

    Summary 48

    Exam Essentials 49

    Review Questions 51

    Chapter 3 Databases and Data Acquisition 57

    Exploring Databases 58

    The Relational Model 59

    Relational Databases 62

    Nonrelational Databases 68

    Database Use Cases 71

    Online Transactional Processing 71

    Online Analytical Processing 74

    Schema Concepts 75

    Data Acquisition Concepts 81

    Integration 81

    Data Collection Methods 83

    Working with Data 88

    Data Manipulation 89

    Query Optimization 96

    Summary 99

    Exam Essentials 100

    Review Questions 101

    Chapter 4 Data Quality 105

    Data Quality Challenges 106

    Duplicate Data 106

    Redundant Data 107

    Missing Values 110

    Invalid Data 111

    Nonparametric data 112

    Data Outliers 113

    Specification Mismatch 114

    Data Type Validation 114

    Data Manipulation Techniques 116

    Recoding Data 116

    Derived Variables 117

    Data Merge 118

    Data Blending 119

    Concatenation 121

    Data Append 121

    Imputation 122

    Reduction 124

    Aggregation 126

    Transposition 127

    Normalization 128

    Parsing/String Manipulation 130

    Managing Data Quality 132

    Circumstances to Check for Quality 132

    Automated Validation 136

    Data Quality Dimensions 136

    Data Quality Rules and Metrics 140

    Methods to Validate Quality 142

    Summary 144

    Exam Essentials 145

    Review Questions 146

    Chapter 5 Data Analysis and Statistics 151

    Fundamentals of Statistics 152

    Descriptive Statistics 155

    Measures of Frequency 155

    Measures of Central Tendency 160

    Measures of Dispersion 164

    Measures of Position 173

    Inferential Statistics 175

    Confidence Intervals 175

    Hypothesis Testing 179

    Simple Linear Regression 186

    Analysis Techniques 190

    Determine Type of Analysis 190

    Types of Analysis 191

    Exploratory Data Analysis 192

    Summary 192

    Exam Essentials 194

    Review Questions 196

    Chapter 6 Data Analytics Tools 201

    Spreadsheets 202

    Microsoft Excel 203

    Programming Languages 205

    R 205

    Python 206

    Structured Query Language (SQL) 208

    Statistics Packages 209

    IBM SPSS 210

    SAS 211

    Stata 211

    Minitab 212

    Machine Learning 212

    IBM SPSS Modeler 213

    RapidMiner 214

    Analytics Suites 217

    IBM Cognos 217

    Power BI 218

    MicroStrategy 219

    Domo 220

    Datorama 221

    AWS QuickSight 222

    Tableau 222

    Qlik 224

    BusinessObjects 225

    Summary 225

    Exam Essentials 225

    Review Questions 227

    Chapter 7 Data Visualization with Reports and Dashboards 231

    Understanding Business Requirements 232

    Understanding Report Design Elements 235

    Report Cover Page 236

    Executive Summary 237

    Design Elements 239

    Documentation Elements 244

    Understanding Dashboard Development Methods 247

    Consumer Types 247

    Data Source Considerations 248

    Data Type Considerations 249

    Development Process 250

    Delivery Considerations 250

    Operational Considerations 252

    Exploring Visualization Types 252

    Charts 252

    Maps 258

    Waterfall 264

    Infographic 266

    Word Cloud 267

    Comparing Report Types 268

    Static and Dynamic 268

    Ad Hoc 269

    Self-Service (On-Demand) 269

    Recurring Reports 269

    Tactical and Research 270

    Summary 271

    Exam Essentials 272

    Review Questions 274

    Chapter 8 Data Governance 279

    Data Governance Concepts 280

    Data Governance Roles 281

    Access Requirements 281

    Security Requirements 286

    Storage Environment Requirements 289

    Use Requirements 291

    Entity Relationship Requirements 292

    Data Classification Requirements 292

    Jurisdiction Requirements 297

    Breach Reporting Requirements 298

    Understanding Master Data Management 299

    Processes 300

    Circumstances 301

    Summary 303

    Exam Essentials 304

    Review Questions 306

    Appendix Answers to the Review Questions 311

    Chapter 2: Understanding Data 312

    Chapter 3: Databases and Data Acquisition 314

    Chapter 4: Data Quality 315

    Chapter 5: Data Analysis and Statistics 317

    Chapter 6: Data Analytics Tools 319

    Chapter 7: Data Visualization with Reports and Dashboards 322

    Chapter 8: Data Governance 323

    Index 327

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account