Description

Book Synopsis
This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment.

Table of Contents
Introduction, or What's Wrong with Literary Studies?; Part I. Theory: 1. Probable Cause; Part II. Evidence Eve Kraicer, Nicholas King, Emma Ebowe, Matthew Hunter, Victoria Svaikovsky, and Sunyam Bagga; 2. Machine Learning as a Collaborative Process; 3. Results; Part III. Discussion: 4. Don't Generalize (from Case Studies): The Case for Open Generalization; 5. Don't Generalize (At All): The Case for the Open Mind; Conclusion: On the Mutuality of Method.

Can We Be Wrong The Problem of Textual Evidence

Product form

£17.00

Includes FREE delivery

Order before 4pm today for delivery by Wed 7 Jan 2026.

A Paperback by Andrew Piper

2 in stock


    View other formats and editions of Can We Be Wrong The Problem of Textual Evidence by Andrew Piper

    Publisher: Cambridge University Press
    Publication Date: 11/19/2020 12:00:00 AM
    ISBN13: 9781108926201, 978-1108926201
    ISBN10: 1108926207

    Description

    Book Synopsis
    This Element tackles the problem of generalization with respect to text-based evidence in the field of literary studies. When working with texts, how can we move, reliably and credibly, from individual observations to more general beliefs about the world? The onset of computational methods has highlighted major shortcomings of traditional approaches to texts when it comes to working with small samples of evidence. This Element combines a machine learning-based approach to detect the prevalence and nature of generalization across tens of thousands of sentences from different disciplines alongside a robust discussion of potential solutions to the problem of the generalizability of textual evidence. It exemplifies the way mixed methods can be used in complementary fashion to develop nuanced, evidence-based arguments about complex disciplinary issues in a data-driven research environment.

    Table of Contents
    Introduction, or What's Wrong with Literary Studies?; Part I. Theory: 1. Probable Cause; Part II. Evidence Eve Kraicer, Nicholas King, Emma Ebowe, Matthew Hunter, Victoria Svaikovsky, and Sunyam Bagga; 2. Machine Learning as a Collaborative Process; 3. Results; Part III. Discussion: 4. Don't Generalize (from Case Studies): The Case for Open Generalization; 5. Don't Generalize (At All): The Case for the Open Mind; Conclusion: On the Mutuality of Method.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account