Description
Book SynopsisVector Analysis.- Sources and Fields.- Bioelectric Potentials.- Channels.- Action Potentials.- Impulse Propagation.- Electrical Stimulation.- Extracellular Fields.- Cardiac Electrophysiology.- The Neuromuscular Junction.- Skeletal Muscle.- Functional Electrical Stimulation.- Exercises.
Trade ReviewPraise for Previous Editions:
"This fine text, by two well-known bioengineering professors at Duke University, is an introduction to electrophysiology aimed at engineering students. Most of its chapters cover basic topics in electrophysiology: the electrical properties of the cell membrane, action potentials, cable theory, the neuromuscular junction, extracellular fields, and cardiac electrophysiology. The authors discuss many topics that are central to biophysics and bioengineering [and] the quantitative methods [they] teach will surely be productive in the future."
IEEE Engineering in Medicine and Biology
"The authors’ goal in producing this book was to provide an introductory text to electrophysiology, based on a quantitative approach. In attempting to achieve this goal, therefore, the authors have opened the book with a useful, and digestible, introduction to various aspects of the mathematics relevant to this field, including vectors, introduction to Laplace, Gauss’s theorem, and Green’s theorem. This book will be useful for students in medical physics and biomedical engineering wishing to enter the field of electrophysiological investigation. It will also be helpful for biologists and physiologists who wish to understand the mathematical treatment of the processes and signals at the center of the interesting interdisciplinary field."
Medical and Biomedical Engineering and Computing
Table of ContentsVector Analysis.- Sources and Fields.- Bioelectric Potentials.- Channels.- Action Potentials.- Impulse Propagation.- Electrical Stimulation.- Extracellular Fields.- Cardiac Electrophysiology.- The Neuromuscular Junction.- Skeletal Muscle.- Functional Electrical Stimulation.- Exercises.