Description

Book Synopsis

The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field.

Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today's engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty.

This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems.

Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts.



Table of Contents

Foreword by J.-F. Aubry ix

Foreword by L. Portinale xiii

Acknowledgments xv

Introduction xvii

Part 1. Bayesian Networks 1

Chapter 1. Bayesian Networks: a Modeling Formalism for System Dependability 3

1.1. Probabilistic graphical models: BN 5

1.1.1. BN: a formalism to model dependability 5

1.1.2. Inference mechanism 7

1.2. Reliability and joint probability distributions 8

1.2.1. Multi-state system example 8

1.2.2. Joint distribution 9

1.2.3. Reliability computing 9

1.2.4. Factorization 10

1.3. Discussion and conclusion 14

Chapter 2. Bayesian Network: Modeling Formalism of the Stucture Function of Boolean Systems 17

2.1. Introduction 17

2.2. BN models in the Boolean case 19

2.2.1. BN model from cut-sets 20

2.2.2. BN model from tie-sets 23

2.2.3. BN model from a top-down approach 25

2.2.4. BN model of a bowtie 26

2.3. Standard Boolean gates CPT 29

2.4. Non-deterministic CPT 31

2.5. Industrial applications 38

2.6. Conclusion 41

Chapter 3. Bayesian Network: Modeling Formalism of the Structure Function of Multi-State Systems 43

3.1. Introduction 43

3.2. BN models in the multi-state case 43

3.2.1. BN model of multi-state systems from tie-sets 44

3.2.2. BN model of multi-state systems from cut-sets 49

3.2.3. BN model of multi-state systems from functional and dysfunctional analysis 52

3.3. Non-deterministic CPT 58

3.4. Industrial applications 59

3.5. Conclusion 62

Part 2. Dynamic Bayesian Networks 65

Chapter 4. Dynamic Bayesian Networks: Integrating Environmental and Operating Constraints in Reliability Computation 67

4.1. Introduction 67

4.2. Component modeled by a DBN 69

4.2.1. DBN model of a MC 70

4.2.2. DBN model of non-homogeneous MC 71

4.2.3. Stochastic process with exogenous constraint 72

4.3. Model of a dynamic multi-state system 75

4.4. Discussion on dependent processes 79

4.5. Conclusion 81

Chapter 5. Dynamic Bayesian Networks: Integrating Reliability Computation in the Control System 83

5.1. Introduction 83

5.2. Integrating reliability information into the control 84

5.3. Control integrating reliability modeled by DBN 85

5.3.1. Modeling and controlling an over-actuated system 86

5.3.2. Integrating reliability 88

5.4. Application to a drinking water network 90

5.4.1. DBN modeling 91

5.4.2. Results and discussion 92

5.5. Conclusion 95

5.6. Acknowledgments 96

Conclusion 97

Bibliography 101

Index 113

Benefits of Bayesian Network Models

Product form

£125.06

Includes FREE delivery

RRP £138.95 – you save £13.89 (9%)

Order before 4pm today for delivery by Fri 16 Jan 2026.

A Paperback / softback by Philippe Weber, Christophe Simon

Out of stock


    View other formats and editions of Benefits of Bayesian Network Models by Philippe Weber

    Publisher: ISTE Ltd and John Wiley & Sons Inc
    Publication Date: 16/08/2016
    ISBN13: 9781848219922, 978-1848219922
    ISBN10: 184821992X

    Description

    Book Synopsis

    The application of Bayesian Networks (BN) or Dynamic Bayesian Networks (DBN) in dependability and risk analysis is a recent development. A large number of scientific publications show the interest in the applications of BN in this field.

    Unfortunately, this modeling formalism is not fully accepted in the industry. The questions facing today's engineers are focused on the validity of BN models and the resulting estimates. Indeed, a BN model is not based on a specific semantic in dependability but offers a general formalism for modeling problems under uncertainty.

    This book explains the principles of knowledge structuration to ensure a valid BN and DBN model and illustrate the flexibility and efficiency of these representations in dependability, risk analysis and control of multi-state systems and dynamic systems.

    Across five chapters, the authors present several modeling methods and industrial applications are referenced for illustration in real industrial contexts.



    Table of Contents

    Foreword by J.-F. Aubry ix

    Foreword by L. Portinale xiii

    Acknowledgments xv

    Introduction xvii

    Part 1. Bayesian Networks 1

    Chapter 1. Bayesian Networks: a Modeling Formalism for System Dependability 3

    1.1. Probabilistic graphical models: BN 5

    1.1.1. BN: a formalism to model dependability 5

    1.1.2. Inference mechanism 7

    1.2. Reliability and joint probability distributions 8

    1.2.1. Multi-state system example 8

    1.2.2. Joint distribution 9

    1.2.3. Reliability computing 9

    1.2.4. Factorization 10

    1.3. Discussion and conclusion 14

    Chapter 2. Bayesian Network: Modeling Formalism of the Stucture Function of Boolean Systems 17

    2.1. Introduction 17

    2.2. BN models in the Boolean case 19

    2.2.1. BN model from cut-sets 20

    2.2.2. BN model from tie-sets 23

    2.2.3. BN model from a top-down approach 25

    2.2.4. BN model of a bowtie 26

    2.3. Standard Boolean gates CPT 29

    2.4. Non-deterministic CPT 31

    2.5. Industrial applications 38

    2.6. Conclusion 41

    Chapter 3. Bayesian Network: Modeling Formalism of the Structure Function of Multi-State Systems 43

    3.1. Introduction 43

    3.2. BN models in the multi-state case 43

    3.2.1. BN model of multi-state systems from tie-sets 44

    3.2.2. BN model of multi-state systems from cut-sets 49

    3.2.3. BN model of multi-state systems from functional and dysfunctional analysis 52

    3.3. Non-deterministic CPT 58

    3.4. Industrial applications 59

    3.5. Conclusion 62

    Part 2. Dynamic Bayesian Networks 65

    Chapter 4. Dynamic Bayesian Networks: Integrating Environmental and Operating Constraints in Reliability Computation 67

    4.1. Introduction 67

    4.2. Component modeled by a DBN 69

    4.2.1. DBN model of a MC 70

    4.2.2. DBN model of non-homogeneous MC 71

    4.2.3. Stochastic process with exogenous constraint 72

    4.3. Model of a dynamic multi-state system 75

    4.4. Discussion on dependent processes 79

    4.5. Conclusion 81

    Chapter 5. Dynamic Bayesian Networks: Integrating Reliability Computation in the Control System 83

    5.1. Introduction 83

    5.2. Integrating reliability information into the control 84

    5.3. Control integrating reliability modeled by DBN 85

    5.3.1. Modeling and controlling an over-actuated system 86

    5.3.2. Integrating reliability 88

    5.4. Application to a drinking water network 90

    5.4.1. DBN modeling 91

    5.4.2. Results and discussion 92

    5.5. Conclusion 95

    5.6. Acknowledgments 96

    Conclusion 97

    Bibliography 101

    Index 113

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account