Description

Book Synopsis

In this book, the author deals mainly with two topics: (1) single-molecule visualization of switching behaviors in the DNA nanoframe system utilizing different kinds of molecular switches through the use of high-speed atomic force microscope (AFM); (2) construction of photocontrollable DNA nanostructures in programmed patterns and direct visualization of the dynamic assembling process. Here, high-speed AFM was employed to observe the dynamic movements of single molecules. Compared to a traditional single-molecule analysis method, such as fluorescence spectroscopy or electron microscopy, high-speed AFM makes possible the real-time observation of molecule behaviors. DNA nanostructures were designed and assembled as scaffolds to incorporate interested biomolecules. The observations were carried out under robust conditions without complicated pretreatment. Moreover, the photoresponsive molecules were successfully assembled into around 100 nm-sized DNA nanostructures. The assembly/disassembly of nanostructures can be regulated reversibly by photoirradiation. This book explains how DNA origami has gradually become a useful tool for the investigation of biochemical interactions in defined nanospace. It also shows the possibility of DNA nanostructures acting as nanodevices for application in biological systems, serving as a good introduction to basic DNA nanotechnology.



Table of Contents
Introduction.- Direct observation of single hybridization and dissociation of photoresponsive oligonucleotides in the designed DNA nanostructure.- Direct observation of logic-gated dual-switching behaviors inducing the state transition in a DNA nanostructure.- Multi-directionally photo-controllable DNA nanostructure assembling reversibly in programmed patterns.- Arrangement of gold nanoparticles onto a slit-type DNA nanostructure in various patterns.

Artificially Controllable Nanodevices Constructed

Product form

£67.49

Includes FREE delivery

RRP £89.99 – you save £22.50 (25%)

Order before 4pm tomorrow for delivery by Sat 20 Dec 2025.

A Paperback / softback by Yangyang Yang

Out of stock


    View other formats and editions of Artificially Controllable Nanodevices Constructed by Yangyang Yang

    Publisher: Springer Verlag, Japan
    Publication Date: 07/04/2018
    ISBN13: 9784431566908, 978-4431566908
    ISBN10: 4431566902

    Description

    Book Synopsis

    In this book, the author deals mainly with two topics: (1) single-molecule visualization of switching behaviors in the DNA nanoframe system utilizing different kinds of molecular switches through the use of high-speed atomic force microscope (AFM); (2) construction of photocontrollable DNA nanostructures in programmed patterns and direct visualization of the dynamic assembling process. Here, high-speed AFM was employed to observe the dynamic movements of single molecules. Compared to a traditional single-molecule analysis method, such as fluorescence spectroscopy or electron microscopy, high-speed AFM makes possible the real-time observation of molecule behaviors. DNA nanostructures were designed and assembled as scaffolds to incorporate interested biomolecules. The observations were carried out under robust conditions without complicated pretreatment. Moreover, the photoresponsive molecules were successfully assembled into around 100 nm-sized DNA nanostructures. The assembly/disassembly of nanostructures can be regulated reversibly by photoirradiation. This book explains how DNA origami has gradually become a useful tool for the investigation of biochemical interactions in defined nanospace. It also shows the possibility of DNA nanostructures acting as nanodevices for application in biological systems, serving as a good introduction to basic DNA nanotechnology.



    Table of Contents
    Introduction.- Direct observation of single hybridization and dissociation of photoresponsive oligonucleotides in the designed DNA nanostructure.- Direct observation of logic-gated dual-switching behaviors inducing the state transition in a DNA nanostructure.- Multi-directionally photo-controllable DNA nanostructure assembling reversibly in programmed patterns.- Arrangement of gold nanoparticles onto a slit-type DNA nanostructure in various patterns.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account