Description

Book Synopsis
In particular, if f and j are x2 x 2 2 2 both O(e- / ), then f = j = Ae- / , where A is a constant;

Trade Review

"This nicely written book by Thangavelu is concerned with extensions of Hardy's theorem to settings that arise from noncommutative harmonic analysis.... Each chapter contains several applications to the heat equation in various settings and ends with an extensive presentation of related topics, current research, detailed references to the literature, and lists of open problems. This makes the book an invaluable resource for graduate students and researchers in harmonic analysis and applied mathematics."

—SIAM Review

"…Each chapter ends with useful notes and open problems. Everything is written in sufficient detail to benefit specialized interested readers…"

—MATHEMATICAL REVIEWS

"The authoer discusses inthe present book the original theorem of Hardy and some of its generaliztions and its connections to noncommunitave analysis, harmonic analysis and special functions. First Hardy's theorem for the Euclidian Fourier transform is treated, and a theorem of Beurling and Hömander Subsequently Hardy's theorem is dicussed for the Fourier transfom on the Heisenberg group. finally the author discusses generaliztions of Hardy's theorem involving the Helgason Fourier transform for rank one symmetric spaces and for H-type groups. This unique book will be of great value for readers interested in this branch of analysis."

---Monatshefte für Mathematik



Table of Contents
1 Euclidean Spaces.- 1.1 Fourier transform on L1(?n).- 1.2 Hermite functions and L2 theory.- 1.3 Spherical harmonics and symmetry properties.- 1.4 Hardy’s theorem on ?n.- 1.5 Beurling’s theorem and its consequences.- 1.6 Further results and open problems.- 2 Heisenberg Groups.- 2.1 Heisenberg group and its representations.- 2.2 Fourier transform on Hn.- 2.3 Special Hermite functions.- 2.4 Fourier transform of radial functions.- 2.5 Unitary group and spherical harmonics.- 2.6 Spherical harmonics and the Weyl transform.- 2.7 Weyl correspondence of polynomials.- 2.8 Heat kernel for the sublaplacian.- 2.9 Hardy’s theorem for the Heisenberg group.- 2.10 Further results and open problems.- 3 Symmetric Spaces of Rank 1.- 3.1 A Riemannian space associated to Hn.- 3.2 The algebra of radial functions on S.- 3.3 Spherical Fourier transform.- 3.4 Helgason Fourier transform.- 3.5 Hecke-Bochner formula for the Helgason Fourier transform.- 3.6 Jacobi transforms.- 3.7 Estimating the heat kernel.- 3.8 Hardy’s theorem for the Helgason Fourier transform.- 3.9 Further results and open problems.

An Introduction to the Uncertainty Principle

Product form

£80.99

Includes FREE delivery

RRP £89.99 – you save £9.00 (10%)

Order before 4pm today for delivery by Wed 14 Jan 2026.

A Hardback by Sundaram Thangavelu

1 in stock


    View other formats and editions of An Introduction to the Uncertainty Principle by Sundaram Thangavelu

    Publisher: Birkhauser Boston Inc
    Publication Date: 09/10/2003
    ISBN13: 9780817643300, 978-0817643300
    ISBN10: 817643303

    Description

    Book Synopsis
    In particular, if f and j are x2 x 2 2 2 both O(e- / ), then f = j = Ae- / , where A is a constant;

    Trade Review

    "This nicely written book by Thangavelu is concerned with extensions of Hardy's theorem to settings that arise from noncommutative harmonic analysis.... Each chapter contains several applications to the heat equation in various settings and ends with an extensive presentation of related topics, current research, detailed references to the literature, and lists of open problems. This makes the book an invaluable resource for graduate students and researchers in harmonic analysis and applied mathematics."

    —SIAM Review

    "…Each chapter ends with useful notes and open problems. Everything is written in sufficient detail to benefit specialized interested readers…"

    —MATHEMATICAL REVIEWS

    "The authoer discusses inthe present book the original theorem of Hardy and some of its generaliztions and its connections to noncommunitave analysis, harmonic analysis and special functions. First Hardy's theorem for the Euclidian Fourier transform is treated, and a theorem of Beurling and Hömander Subsequently Hardy's theorem is dicussed for the Fourier transfom on the Heisenberg group. finally the author discusses generaliztions of Hardy's theorem involving the Helgason Fourier transform for rank one symmetric spaces and for H-type groups. This unique book will be of great value for readers interested in this branch of analysis."

    ---Monatshefte für Mathematik



    Table of Contents
    1 Euclidean Spaces.- 1.1 Fourier transform on L1(?n).- 1.2 Hermite functions and L2 theory.- 1.3 Spherical harmonics and symmetry properties.- 1.4 Hardy’s theorem on ?n.- 1.5 Beurling’s theorem and its consequences.- 1.6 Further results and open problems.- 2 Heisenberg Groups.- 2.1 Heisenberg group and its representations.- 2.2 Fourier transform on Hn.- 2.3 Special Hermite functions.- 2.4 Fourier transform of radial functions.- 2.5 Unitary group and spherical harmonics.- 2.6 Spherical harmonics and the Weyl transform.- 2.7 Weyl correspondence of polynomials.- 2.8 Heat kernel for the sublaplacian.- 2.9 Hardy’s theorem for the Heisenberg group.- 2.10 Further results and open problems.- 3 Symmetric Spaces of Rank 1.- 3.1 A Riemannian space associated to Hn.- 3.2 The algebra of radial functions on S.- 3.3 Spherical Fourier transform.- 3.4 Helgason Fourier transform.- 3.5 Hecke-Bochner formula for the Helgason Fourier transform.- 3.6 Jacobi transforms.- 3.7 Estimating the heat kernel.- 3.8 Hardy’s theorem for the Helgason Fourier transform.- 3.9 Further results and open problems.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account