Description

Book Synopsis
1 Groups and Homomorphisms.- Permutations.- Cycles.- Factorization into Disjoint Cycles.- Even and Odd Permutations.- Semigroups.- Groups.- Homomorphisms.- 2 The Isomorphism Theorems.- Subgroups.- Lagrange's Theorem.- Cyclic Groups.- Normal Subgroups.- Quotient Groups.- The Isomorphism Theorems.- Correspondence Theorem.- Direct Products.- 3 Symmetric Groups and G-Sets.- Conjugates.- Symmetric Groups.- The Simplicity of An.- Some Representation Theorems.- G-Sets.- Counting Orbits.- Some Geometry.- 4 The Sylow Theorems.- p-Groups.- The Sylow Theorems.- Groups of Small Order.- 5 Normal Series.- Some Galois Theory.- The Jordan-Hölder Theorem.- Solvable Groups.- Two Theorems of P. Hall.- Central Series and Nilpotent Groups.- p-Groups.- 6 Finite Direct Products.- The Basis Theorem.- The Fundamental Theorem of Finite Abelian Groups.- Canonical Forms; Existence.- Canonical Forms; Uniqueness.- The KrullSchmidt Theorem.- Operator Groups.- 7 Extensions and Cohomology.- The Extension Problem.- Automorphism Groups.- Semidirect Products.- Wreath Products.- Factor Sets.- Theorems of Schur-Zassenhaus and Gaschütz.- Transfer and Burnside's Theorem.- Projective Representations and the Schur Multiplier.- Derivations.- 8 Some Simple Linear Groups.- Finite Fields.- The General Linear Group.- PSL(2, K).- PSL(m, K).- Classical Groups.- 9 Permutations and the Mathieu Groups.- Multiple Transitivity.- Primitive G-Sets.- Simplicity Criteria.- Affine Geometry.- Projective Geometry.- Sharply 3-Transitivc Groups.- Mathieu Groups.- Steiner Systems.- 10 Abelian Groups.- Basics.- Free Abelian Groups.- Finitely Generated Abelian Groups.- Divisible and Reduced Groups.- Torsion Groups.- Subgroups of ?.- Character Groups.- 11 Free Groups and Free Products.- Generators and Relations.- SemigroupInterlude.- Coset Enumeration.- Presentations and the Schur Multiplier.- Fundamental Groups of Complexes.- Tietze's Theorem.- Covering Complexes.- The Nielscn-Schreier Theorem.- Free Products.- The Kurosh Theorem.- The van Kampen Theorem.- Amalgams.- HNN Extensions.- 12 The Word Problem.- Turing Machines.- The MarkovPost Theorem.- The NovikovBooneBritton Theorem: Sufficiency of Boone's Lemma.- Cancellation Diagrams.- The NovikovBooneBritton Theorem: Necessity of Boone's Lemma.- The Higman Imbedding Theorem.- Some Applications.- Epilogue.- Appendix I Some Major Algebraic Systems.- Appendix II Equivalence Relations and Equivalence Classes.- Appendix III Functions.- APPENDIX IV Zorn's Lemma.- APPENDIX V Countability.- APPENDIX VI Commutative Rings.- Notation.

Trade Review

Fourth Edition

J.J. Rotman

An Introduction to the Theory of Groups

"Rotman has given us a very readable and valuable text, and has shown us many beautiful vistas along his chosen route."—MATHEMATICAL REVIEWS



Table of Contents
1 Groups and Homomorphisms.- Permutations.- Cycles.- Factorization into Disjoint Cycles.- Even and Odd Permutations.- Semigroups.- Groups.- Homomorphisms.- 2 The Isomorphism Theorems.- Subgroups.- Lagrange’s Theorem.- Cyclic Groups.- Normal Subgroups.- Quotient Groups.- The Isomorphism Theorems.- Correspondence Theorem.- Direct Products.- 3 Symmetric Groups and G-Sets.- Conjugates.- Symmetric Groups.- The Simplicity of An.- Some Representation Theorems.- G-Sets.- Counting Orbits.- Some Geometry.- 4 The Sylow Theorems.- p-Groups.- The Sylow Theorems.- Groups of Small Order.- 5 Normal Series.- Some Galois Theory.- The Jordan-Hölder Theorem.- Solvable Groups.- Two Theorems of P. Hall.- Central Series and Nilpotent Groups.- p-Groups.- 6 Finite Direct Products.- The Basis Theorem.- The Fundamental Theorem of Finite Abelian Groups.- Canonical Forms; Existence.- Canonical Forms; Uniqueness.- The Krull—Schmidt Theorem.- Operator Groups.- 7 Extensions and Cohomology.- The Extension Problem.- Automorphism Groups.- Semidirect Products.- Wreath Products.- Factor Sets.- Theorems of Schur-Zassenhaus and Gaschütz.- Transfer and Burnside’s Theorem.- Projective Representations and the Schur Multiplier.- Derivations.- 8 Some Simple Linear Groups.- Finite Fields.- The General Linear Group.- PSL(2, K).- PSL(m, K).- Classical Groups.- 9 Permutations and the Mathieu Groups.- Multiple Transitivity.- Primitive G-Sets.- Simplicity Criteria.- Affine Geometry.- Projective Geometry.- Sharply 3-Transitivc Groups.- Mathieu Groups.- Steiner Systems.- 10 Abelian Groups.- Basics.- Free Abelian Groups.- Finitely Generated Abelian Groups.- Divisible and Reduced Groups.- Torsion Groups.- Subgroups of ?.- Character Groups.- 11 Free Groups and Free Products.- Generators and Relations.- Semigroup Interlude.- Coset Enumeration.- Presentations and the Schur Multiplier.- Fundamental Groups of Complexes.- Tietze’s Theorem.- Covering Complexes.- The Nielscn-Schreier Theorem.- Free Products.- The Kurosh Theorem.- The van Kampen Theorem.- Amalgams.- HNN Extensions.- 12 The Word Problem.- Turing Machines.- The Markov—Post Theorem.- The Novikov—Boone—Britton Theorem: Sufficiency of Boone’s Lemma.- Cancellation Diagrams.- The Novikov—Boone—Britton Theorem: Necessity of Boone’s Lemma.- The Higman Imbedding Theorem.- Some Applications.- Epilogue.- Appendix I Some Major Algebraic Systems.- Appendix II Equivalence Relations and Equivalence Classes.- Appendix III Functions.- APPENDIX IV Zorn’s Lemma.- APPENDIX V Countability.- APPENDIX VI Commutative Rings.- Notation.

An Introduction to the Theory of Groups

Product form

£51.29

Includes FREE delivery

RRP £53.99 – you save £2.70 (5%)

Order before 4pm today for delivery by Thu 18 Dec 2025.

A Hardback by Joseph J. Rotman

15 in stock


    View other formats and editions of An Introduction to the Theory of Groups by Joseph J. Rotman

    Publisher: Springer New York
    Publication Date: 11/4/1994 12:00:00 AM
    ISBN13: 9780387942858, 978-0387942858
    ISBN10: 0387942858

    Description

    Book Synopsis
    1 Groups and Homomorphisms.- Permutations.- Cycles.- Factorization into Disjoint Cycles.- Even and Odd Permutations.- Semigroups.- Groups.- Homomorphisms.- 2 The Isomorphism Theorems.- Subgroups.- Lagrange's Theorem.- Cyclic Groups.- Normal Subgroups.- Quotient Groups.- The Isomorphism Theorems.- Correspondence Theorem.- Direct Products.- 3 Symmetric Groups and G-Sets.- Conjugates.- Symmetric Groups.- The Simplicity of An.- Some Representation Theorems.- G-Sets.- Counting Orbits.- Some Geometry.- 4 The Sylow Theorems.- p-Groups.- The Sylow Theorems.- Groups of Small Order.- 5 Normal Series.- Some Galois Theory.- The Jordan-Hölder Theorem.- Solvable Groups.- Two Theorems of P. Hall.- Central Series and Nilpotent Groups.- p-Groups.- 6 Finite Direct Products.- The Basis Theorem.- The Fundamental Theorem of Finite Abelian Groups.- Canonical Forms; Existence.- Canonical Forms; Uniqueness.- The KrullSchmidt Theorem.- Operator Groups.- 7 Extensions and Cohomology.- The Extension Problem.- Automorphism Groups.- Semidirect Products.- Wreath Products.- Factor Sets.- Theorems of Schur-Zassenhaus and Gaschütz.- Transfer and Burnside's Theorem.- Projective Representations and the Schur Multiplier.- Derivations.- 8 Some Simple Linear Groups.- Finite Fields.- The General Linear Group.- PSL(2, K).- PSL(m, K).- Classical Groups.- 9 Permutations and the Mathieu Groups.- Multiple Transitivity.- Primitive G-Sets.- Simplicity Criteria.- Affine Geometry.- Projective Geometry.- Sharply 3-Transitivc Groups.- Mathieu Groups.- Steiner Systems.- 10 Abelian Groups.- Basics.- Free Abelian Groups.- Finitely Generated Abelian Groups.- Divisible and Reduced Groups.- Torsion Groups.- Subgroups of ?.- Character Groups.- 11 Free Groups and Free Products.- Generators and Relations.- SemigroupInterlude.- Coset Enumeration.- Presentations and the Schur Multiplier.- Fundamental Groups of Complexes.- Tietze's Theorem.- Covering Complexes.- The Nielscn-Schreier Theorem.- Free Products.- The Kurosh Theorem.- The van Kampen Theorem.- Amalgams.- HNN Extensions.- 12 The Word Problem.- Turing Machines.- The MarkovPost Theorem.- The NovikovBooneBritton Theorem: Sufficiency of Boone's Lemma.- Cancellation Diagrams.- The NovikovBooneBritton Theorem: Necessity of Boone's Lemma.- The Higman Imbedding Theorem.- Some Applications.- Epilogue.- Appendix I Some Major Algebraic Systems.- Appendix II Equivalence Relations and Equivalence Classes.- Appendix III Functions.- APPENDIX IV Zorn's Lemma.- APPENDIX V Countability.- APPENDIX VI Commutative Rings.- Notation.

    Trade Review

    Fourth Edition

    J.J. Rotman

    An Introduction to the Theory of Groups

    "Rotman has given us a very readable and valuable text, and has shown us many beautiful vistas along his chosen route."—MATHEMATICAL REVIEWS



    Table of Contents
    1 Groups and Homomorphisms.- Permutations.- Cycles.- Factorization into Disjoint Cycles.- Even and Odd Permutations.- Semigroups.- Groups.- Homomorphisms.- 2 The Isomorphism Theorems.- Subgroups.- Lagrange’s Theorem.- Cyclic Groups.- Normal Subgroups.- Quotient Groups.- The Isomorphism Theorems.- Correspondence Theorem.- Direct Products.- 3 Symmetric Groups and G-Sets.- Conjugates.- Symmetric Groups.- The Simplicity of An.- Some Representation Theorems.- G-Sets.- Counting Orbits.- Some Geometry.- 4 The Sylow Theorems.- p-Groups.- The Sylow Theorems.- Groups of Small Order.- 5 Normal Series.- Some Galois Theory.- The Jordan-Hölder Theorem.- Solvable Groups.- Two Theorems of P. Hall.- Central Series and Nilpotent Groups.- p-Groups.- 6 Finite Direct Products.- The Basis Theorem.- The Fundamental Theorem of Finite Abelian Groups.- Canonical Forms; Existence.- Canonical Forms; Uniqueness.- The Krull—Schmidt Theorem.- Operator Groups.- 7 Extensions and Cohomology.- The Extension Problem.- Automorphism Groups.- Semidirect Products.- Wreath Products.- Factor Sets.- Theorems of Schur-Zassenhaus and Gaschütz.- Transfer and Burnside’s Theorem.- Projective Representations and the Schur Multiplier.- Derivations.- 8 Some Simple Linear Groups.- Finite Fields.- The General Linear Group.- PSL(2, K).- PSL(m, K).- Classical Groups.- 9 Permutations and the Mathieu Groups.- Multiple Transitivity.- Primitive G-Sets.- Simplicity Criteria.- Affine Geometry.- Projective Geometry.- Sharply 3-Transitivc Groups.- Mathieu Groups.- Steiner Systems.- 10 Abelian Groups.- Basics.- Free Abelian Groups.- Finitely Generated Abelian Groups.- Divisible and Reduced Groups.- Torsion Groups.- Subgroups of ?.- Character Groups.- 11 Free Groups and Free Products.- Generators and Relations.- Semigroup Interlude.- Coset Enumeration.- Presentations and the Schur Multiplier.- Fundamental Groups of Complexes.- Tietze’s Theorem.- Covering Complexes.- The Nielscn-Schreier Theorem.- Free Products.- The Kurosh Theorem.- The van Kampen Theorem.- Amalgams.- HNN Extensions.- 12 The Word Problem.- Turing Machines.- The Markov—Post Theorem.- The Novikov—Boone—Britton Theorem: Sufficiency of Boone’s Lemma.- Cancellation Diagrams.- The Novikov—Boone—Britton Theorem: Necessity of Boone’s Lemma.- The Higman Imbedding Theorem.- Some Applications.- Epilogue.- Appendix I Some Major Algebraic Systems.- Appendix II Equivalence Relations and Equivalence Classes.- Appendix III Functions.- APPENDIX IV Zorn’s Lemma.- APPENDIX V Countability.- APPENDIX VI Commutative Rings.- Notation.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account