Description

Book Synopsis

The primary goal of this text is a practical one. Equipping students with enough knowledge and creating an independent research platform, the author strives to prepare students for professional careers. Providing students with a marketable skill set requires topics from many areas of optimization. The initial goal of this text is to develop a marketable skill set for mathematics majors as well as for students of engineering, computer science, economics, statistics, and business. Optimization reaches into many different fields.

This text provides a balance where one is needed. Mathematics optimization books are often too heavy on theory without enough applications; texts aimed at business students are often strong on applications, but weak on math. The book represents an attempt at overcoming this imbalance for all students taking such a course.

The book contains many practical applications but also explains the mathematics behind the techniques, including stating definit

Table of Contents

1. 1. Preamble. 2. The Language of Optimization. 3. Computational Complexity. 4. Algebra Review. 5. Matrix Factorization. 6. Linear Programming. 7. Sensitivity Analysis. 8. Integer Linear Programing. 9. Calculus Review. 10. A Calculus Approach to Nonlinear Programming. 11. Constrained Nonlinear Programming: Lagrange Multipliers and the KKT Conditions. 12. Optimization involving Quadratic Forms. 13. Iterative Methods. 14. Derivative-Free Methods. 15. Search Algorithms. 16. Important Sets for Optimization. 17. The Fundamental Theorem of Linear Programming. 18. Convex Functions. 19. Convex Optimization. 20. An Introduction to Combinatorics. 21. An Introduction to Graph Theory. 22. Network Flows. 23. Minimum-Weight Spanning Trees and Shortest Paths. 24. Network Modeling and the Transshipment Problem. 25. The Traveling Salesperson Problem. Probability. 27. Regression Analysis via Least Squares. 28. Forecasting. 29. Introduction to Machine Learning.

An Introduction to Optimization with Applications

Product form

£80.74

Includes FREE delivery

RRP £84.99 – you save £4.25 (5%)

Order before 4pm tomorrow for delivery by Fri 9 Jan 2026.

A Hardback by Jeffrey Paul Wheeler

1 in stock


    View other formats and editions of An Introduction to Optimization with Applications by Jeffrey Paul Wheeler

    Publisher: Taylor & Francis Ltd
    Publication Date: 12/7/2023 12:00:00 AM
    ISBN13: 9780367425500, 978-0367425500
    ISBN10: 0367425505

    Description

    Book Synopsis

    The primary goal of this text is a practical one. Equipping students with enough knowledge and creating an independent research platform, the author strives to prepare students for professional careers. Providing students with a marketable skill set requires topics from many areas of optimization. The initial goal of this text is to develop a marketable skill set for mathematics majors as well as for students of engineering, computer science, economics, statistics, and business. Optimization reaches into many different fields.

    This text provides a balance where one is needed. Mathematics optimization books are often too heavy on theory without enough applications; texts aimed at business students are often strong on applications, but weak on math. The book represents an attempt at overcoming this imbalance for all students taking such a course.

    The book contains many practical applications but also explains the mathematics behind the techniques, including stating definit

    Table of Contents

    1. 1. Preamble. 2. The Language of Optimization. 3. Computational Complexity. 4. Algebra Review. 5. Matrix Factorization. 6. Linear Programming. 7. Sensitivity Analysis. 8. Integer Linear Programing. 9. Calculus Review. 10. A Calculus Approach to Nonlinear Programming. 11. Constrained Nonlinear Programming: Lagrange Multipliers and the KKT Conditions. 12. Optimization involving Quadratic Forms. 13. Iterative Methods. 14. Derivative-Free Methods. 15. Search Algorithms. 16. Important Sets for Optimization. 17. The Fundamental Theorem of Linear Programming. 18. Convex Functions. 19. Convex Optimization. 20. An Introduction to Combinatorics. 21. An Introduction to Graph Theory. 22. Network Flows. 23. Minimum-Weight Spanning Trees and Shortest Paths. 24. Network Modeling and the Transshipment Problem. 25. The Traveling Salesperson Problem. Probability. 27. Regression Analysis via Least Squares. 28. Forecasting. 29. Introduction to Machine Learning.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account