Description

Book Synopsis
Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory.

Trade Review

From the reviews of the second edition:

“This book could be called a prequel to the book ‘Differential forms in algebraic topology’ by R. Bott and the author. Assuming only basic background in analysis and algebra, the book offers a rather gentle introduction to smooth manifolds and differential forms offering the necessary background to understand and compute deRham cohomology. … The text also contains many exercises … for the ambitious reader.” (A. Cap, Monatshefte für Mathematik, Vol. 161 (3), October, 2010)



Table of Contents
Preface to the Second Edition.- Preface to the First Edition.-Chapter 1. Eudlidean Spaces. 1. Smooth Functions on a Euclidean Space.- 2. Tangent Vectors in R(N) as Derivativations.- 3. The Exterior Algebra of Multicovectors.- 4. Differential Forms on R(N).- Chapter 2. Manifolds.- 5. Manifolds.- 6. Smooth Maps on a Manifold.- 7. Quotients.- Chapter 3. The Tangent Space.- 8. The Tangent Space.- 9. Submanifolds.- 10. Categories and Functors.- 11. The Rank of a Smooth Map.- 12. The Tangent Bundle.- 13. Bump Functions and Partitions of Unity.- 14. Vector Fields.-Chapter 4. Lie Groups and Lie Algebras.- 15. Lie Groups.- 16. Lie Algebras.- Chapter 5. Differential Forms.- 17. Differential 1-Forms.- 18. Differential k-Forms.- 19. The Exterior Derivative.- 20. The Lie Derivative and Interior Multiplication.- Chapter 6. Integration.- 21. Orientations.- 22. Manifolds with Boundary.- 23. Integration on Manifolds.- Chapter 7. De Rham Theory.- 24. De Rham Cohomology.- 25. The Long Exact Sequence in Cohomology.- 26. The Mayer –Vietoris Sequence.- 27. Homotopy Invariance.- 28. Computation of de Rham Cohomology.- 29. Proof of Homotopy Invariance.-Appendices.- A. Point-Set Topology.- B. The Inverse Function Theorem on R(N) and Related Results.- C. Existence of a Partition of Unity in General.- D. Linear Algebra.- E. Quaternions and the Symplectic Group.- Solutions to Selected Exercises.- Hints and Solutions to Selected End-of-Section Problems.- List of Symbols.- References.- Index.

An Introduction to Manifolds

Product form

£42.74

Includes FREE delivery

RRP £44.99 – you save £2.25 (5%)

Order before 4pm today for delivery by Thu 18 Dec 2025.

A Paperback by Loring W. Tu

15 in stock


    View other formats and editions of An Introduction to Manifolds by Loring W. Tu

    Publisher: Springer Science+Business Media
    Publication Date: 10/6/2010 12:00:00 AM
    ISBN13: 9781441973993, 978-1441973993
    ISBN10: 1441973990

    Description

    Book Synopsis
    Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory.

    Trade Review

    From the reviews of the second edition:

    “This book could be called a prequel to the book ‘Differential forms in algebraic topology’ by R. Bott and the author. Assuming only basic background in analysis and algebra, the book offers a rather gentle introduction to smooth manifolds and differential forms offering the necessary background to understand and compute deRham cohomology. … The text also contains many exercises … for the ambitious reader.” (A. Cap, Monatshefte für Mathematik, Vol. 161 (3), October, 2010)



    Table of Contents
    Preface to the Second Edition.- Preface to the First Edition.-Chapter 1. Eudlidean Spaces. 1. Smooth Functions on a Euclidean Space.- 2. Tangent Vectors in R(N) as Derivativations.- 3. The Exterior Algebra of Multicovectors.- 4. Differential Forms on R(N).- Chapter 2. Manifolds.- 5. Manifolds.- 6. Smooth Maps on a Manifold.- 7. Quotients.- Chapter 3. The Tangent Space.- 8. The Tangent Space.- 9. Submanifolds.- 10. Categories and Functors.- 11. The Rank of a Smooth Map.- 12. The Tangent Bundle.- 13. Bump Functions and Partitions of Unity.- 14. Vector Fields.-Chapter 4. Lie Groups and Lie Algebras.- 15. Lie Groups.- 16. Lie Algebras.- Chapter 5. Differential Forms.- 17. Differential 1-Forms.- 18. Differential k-Forms.- 19. The Exterior Derivative.- 20. The Lie Derivative and Interior Multiplication.- Chapter 6. Integration.- 21. Orientations.- 22. Manifolds with Boundary.- 23. Integration on Manifolds.- Chapter 7. De Rham Theory.- 24. De Rham Cohomology.- 25. The Long Exact Sequence in Cohomology.- 26. The Mayer –Vietoris Sequence.- 27. Homotopy Invariance.- 28. Computation of de Rham Cohomology.- 29. Proof of Homotopy Invariance.-Appendices.- A. Point-Set Topology.- B. The Inverse Function Theorem on R(N) and Related Results.- C. Existence of a Partition of Unity in General.- D. Linear Algebra.- E. Quaternions and the Symplectic Group.- Solutions to Selected Exercises.- Hints and Solutions to Selected End-of-Section Problems.- List of Symbols.- References.- Index.

    Recently viewed products

    © 2025 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account