Description

Book Synopsis

These lecture notes provide a rapid, accessible introduction to Bayesian statistical methods. The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models. These advanced modelling techniques can easily be applied using computer code samples written in Python and Stan which are integrated into the main text. Importantly, the reader will learn methods for assessing model fit, and to choose between rival modelling approaches.




Table of Contents
Uncertainty and Decisions.- Prior and Likelihood Representation.- Graphical Modeling.- Parametric Models.- Computational Inference.- Bayesian Software Packages.- Model choice.- Linear Models.- Nonparametric Models.- Nonparametric Regression.- Clustering and Latent Factor Models.- Conjugate Parametric Models.

An Introduction to Bayesian Inference, Methods

Product form

£52.24

Includes FREE delivery

RRP £54.99 – you save £2.75 (5%)

Order before 4pm today for delivery by Mon 19 Jan 2026.

A Paperback / softback by Nick Heard

15 in stock


    View other formats and editions of An Introduction to Bayesian Inference, Methods by Nick Heard

    Publisher: Springer Nature Switzerland AG
    Publication Date: 19/10/2022
    ISBN13: 9783030828103, 978-3030828103
    ISBN10: 3030828107

    Description

    Book Synopsis

    These lecture notes provide a rapid, accessible introduction to Bayesian statistical methods. The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models. These advanced modelling techniques can easily be applied using computer code samples written in Python and Stan which are integrated into the main text. Importantly, the reader will learn methods for assessing model fit, and to choose between rival modelling approaches.




    Table of Contents
    Uncertainty and Decisions.- Prior and Likelihood Representation.- Graphical Modeling.- Parametric Models.- Computational Inference.- Bayesian Software Packages.- Model choice.- Linear Models.- Nonparametric Models.- Nonparametric Regression.- Clustering and Latent Factor Models.- Conjugate Parametric Models.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account