Description
Book SynopsisOne General Basic Theory.- I Algebraic Integers.- II Completions.- III The Different and Discriminant.- IV Cyclotomic Fields.- V Parallelotopes.- VI The Ideal Function.- VII Ideles and Adeles.- VIII Elementary Properties of the Zeta Function and L-series.- Two Class Field Theory.- IX Norm Index Computations.- X The Artin Symbol, Reciprocity Law, and Class Field Theory.- XI The Existence Theorem and Local Class Field Theory.- XII L-series Again.- Three Analytic Theory.- XIII Functional Equation of the Zeta Function, Hecke's Proof.- XIV Functional Equation, Tate's Thesis.- XV Density of Primes and Tauberian Theorem.- XVI The Brauer-Siegel Theorem.- XVII Explicit Formulas.
Trade ReviewSecond Edition
S. Lang
Algebraic Number Theory
"This book is the second edition of Lang's famous and indispensable book on algebraic number theory. The major change from the previous edition is that the last chapter on explicit formulas has been completely rewritten. In addition, a few new sections have been added to the other chapters . . . Lang's books are always of great value for the graduate student and the research mathematician. This updated edition of Algebraic number theory is no exception."—MATHEMATICAL REVIEWS
Table of ContentsOne General Basic Theory.- I Algebraic Integers.- II Completions.- III The Different and Discriminant.- IV Cyclotomic Fields.- V Parallelotopes.- VI The Ideal Function.- VII Ideles and Adeles.- VIII Elementary Properties of the Zeta Function and L-series.- Two Class Field Theory.- IX Norm Index Computations.- X The Artin Symbol, Reciprocity Law, and Class Field Theory.- XI The Existence Theorem and Local Class Field Theory.- XII L-series Again.- Three Analytic Theory.- XIII Functional Equation of the Zeta Function, Hecke’s Proof.- XIV Functional Equation, Tate’s Thesis.- XV Density of Primes and Tauberian Theorem.- XVI The Brauer-Siegel Theorem.- XVII Explicit Formulas.