Description

Book Synopsis
Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory o

Trade Review
"Overall, the many insightful remarks and simple direct language make the book a pleasure to read." Shaowei Lin, Mathematical Reviews

Table of Contents
Preface; 1. Introduction; 2. Singularity theory; 3. Algebraic geometry; 4. Zeta functions and singular integral; 5. Empirical processes; 6. Singular learning theory; 7. Singular learning machines; 8. Singular information science; Bibliography; Index.

Algebraic Geometry and Statistical Learning Theory 25 Cambridge Monographs on Applied and Computational Mathematics Series Number 25

Product form

£76.99

Includes FREE delivery

Order before 4pm tomorrow for delivery by Mon 19 Jan 2026.

A Hardback by Sumio Watanabe

15 in stock


    View other formats and editions of Algebraic Geometry and Statistical Learning Theory 25 Cambridge Monographs on Applied and Computational Mathematics Series Number 25 by Sumio Watanabe

    Publisher: Cambridge University Press
    Publication Date: 8/13/2009 12:00:00 AM
    ISBN13: 9780521864671, 978-0521864671
    ISBN10: 0521864674

    Description

    Book Synopsis
    Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical learning theory. Many widely used statistical models and learning machines applied to information science have a parameter space that is singular: mixture models, neural networks, HMMs, Bayesian networks, and stochastic context-free grammars are major examples. Algebraic geometry and singularity theory provide the necessary tools for studying such non-smooth models. Four main formulas are established: 1. the log likelihood function can be given a common standard form using resolution of singularities, even applied to more complex models; 2. the asymptotic behaviour of the marginal likelihood or 'the evidence' is derived based on zeta function theory; 3. new methods are derived to estimate the generalization errors in Bayes and Gibbs estimations from training errors; 4. the generalization errors of maximum likelihood and a posteriori methods are clarified by empirical process theory o

    Trade Review
    "Overall, the many insightful remarks and simple direct language make the book a pleasure to read." Shaowei Lin, Mathematical Reviews

    Table of Contents
    Preface; 1. Introduction; 2. Singularity theory; 3. Algebraic geometry; 4. Zeta functions and singular integral; 5. Empirical processes; 6. Singular learning theory; 7. Singular learning machines; 8. Singular information science; Bibliography; Index.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account