Description
Book SynopsisI Varieties.- II Schemes.- III Cohomology.- IV Curves.- V Surfaces.- Appendix A Intersection Theory.- 1 Intersection Theory.- 2 Properties of the Chow Ring.- 3 Chern Classes.- 4 The Riemann-Roch Theorem.- 5 Complements and Generalizations.- Appendix B Transcendental Methods.- 1 The Associated Complex Analytic Space.- 2 Comparison of the Algebraic and Analytic Categories.- 3 When is a Compact Complex Manifold Algebraic?.- 4 Kähler Manifolds.- 5 The Exponential Sequence.- Appendix C The Weil Conjectures.- 1 The Zeta Function and the Weil Conjectures.- 2 History of Work on the Weil Conjectures.- 3 The /-adic Cohomology.- 4 Cohomological Interpretation of the Weil Conjectures.- Results from Algebra.- Glossary of Notations.
Trade ReviewR. Hartshorne
Algebraic Geometry
"Enables the reader to make the drastic transition between the basic, intuitive questions about affine and projective varieties with which the subject begins, and the elaborate general methodology of schemes and cohomology employed currently to answer these questions."—MATHEMATICAL REVIEWS
Table of ContentsIntroduction. 1: Varieties. 2: Schemes. 3: Cohomology. 4: Curves. 5: Surfaces. Appendix A: Intersection Theory. B: Transcendental Methods. C: The Weil Conjectures. Bibliography. Results from Algebra. Glossary of Notations. Index.