Description

Book Synopsis
Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as SzemerÃdi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results.

Trade Review
'The book under review is a vital contribution to the literature, and it has already become required reading for a new generation of students as well as for experts in adjacent areas looking to learn about additive combinatorics. … This was very much a book that needed to be written at the time it was, and the authors are to be highly commended for having done so in such an effective way.' Bulletin of the American Mathematical Society
'The book gathers diverse important techniques used in additive combinatorics, and its main advantage is that it is written in a very readable and easy to understand style. The authors try very successfully to develop all the necessary background material … [which] makes the book useful not only to graduate students, but also to researchers who are interested to learn more about the variety of diverse tools and ideas applied in this fascinating subject.' Zentralblatt MATH

Table of Contents
Prologue; 1. The probabilistic method; 2. Sum set estimates; 3. Additive geometry; 4. Fourier-analytic methods; 5. Inverse sum set theorems; 6. Graph-theoretic methods; 7. The Littlewood–Offord problem; 8. Incidence geometry; 9. Algebraic methods; 10. Szemerédi's theorem for k = 3; 11. Szemerédi's theorem for k > 3; 12. Long arithmetic progressions in sum sets; Bibliography; Index.

Additive Combinatorics 105 Cambridge Studies in Advanced Mathematics Series Number 105

Product form

£54.99

Includes FREE delivery

Order before 4pm today for delivery by Fri 16 Jan 2026.

A Paperback by Terence Tao, Van H. Vu

15 in stock


    View other formats and editions of Additive Combinatorics 105 Cambridge Studies in Advanced Mathematics Series Number 105 by Terence Tao

    Publisher: Cambridge University Press
    Publication Date: 11/19/2009 12:00:00 AM
    ISBN13: 9780521136563, 978-0521136563
    ISBN10: 0521136563

    Description

    Book Synopsis
    Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as SzemerÃdi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results.

    Trade Review
    'The book under review is a vital contribution to the literature, and it has already become required reading for a new generation of students as well as for experts in adjacent areas looking to learn about additive combinatorics. … This was very much a book that needed to be written at the time it was, and the authors are to be highly commended for having done so in such an effective way.' Bulletin of the American Mathematical Society
    'The book gathers diverse important techniques used in additive combinatorics, and its main advantage is that it is written in a very readable and easy to understand style. The authors try very successfully to develop all the necessary background material … [which] makes the book useful not only to graduate students, but also to researchers who are interested to learn more about the variety of diverse tools and ideas applied in this fascinating subject.' Zentralblatt MATH

    Table of Contents
    Prologue; 1. The probabilistic method; 2. Sum set estimates; 3. Additive geometry; 4. Fourier-analytic methods; 5. Inverse sum set theorems; 6. Graph-theoretic methods; 7. The Littlewood–Offord problem; 8. Incidence geometry; 9. Algebraic methods; 10. Szemerédi's theorem for k = 3; 11. Szemerédi's theorem for k > 3; 12. Long arithmetic progressions in sum sets; Bibliography; Index.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account