Description

Book Synopsis
This textbook offers an introduction to abelian varieties, a rich topic of central importance to algebraic geometry. The emphasis is on geometric constructions over the complex numbers, notably the construction of important classes of abelian varieties and their algebraic cycles.
The book begins with complex tori and their line bundles (theta functions), naturally leading to the definition of abelian varieties. After establishing basic properties, the moduli space of abelian varieties is introduced and studied. The next chapters are devoted to the study of the main examples of abelian varieties: Jacobian varieties, abelian surfaces, Albanese and Picard varieties, Prym varieties, and intermediate Jacobians. Subsequently, the Fourier–Mukai transform is introduced and applied to the study of sheaves, and results on Chow groups and the Hodge conjecture are obtained.
This book is suitable for use as the main text for a first course on abelian varieties, for instance as a second graduate course in algebraic geometry. The variety of topics and abundant exercises also make it well suited to reading courses. The book provides an accessible reference, not only for students specializing in algebraic geometry but also in related subjects such as number theory, cryptography, mathematical physics, and integrable systems.

Trade Review
“The reorganization of the topics is fine surgical work. Several portions of the original monograph are sewn in a natural way in the new book, adding examples or additional text when necessary, and re-arranging the focus to make it a more friendly introduction to the subject. Careful attention to details and the required background makes the book under review accessible to an interested reader and could be a used as textbook for a course on abelian varieties.” (Felipe Zaldivar, MAA Reviews, June 18, 2023)

Table of Contents
1. Line Bundles on Complex Tori.- 2 Abelian Varieties.- 3 Moduli Spaces.- 4 Jacobian Varieties.- 5 Main Examples of Abelian Varieties.- 6 The Fourier Transform for Sheaves and Cycles.- 7 Introduction to the Hodge Conjecture for Abelian Varieties.

Abelian Varieties over the Complex Numbers: A

Product form

£44.99

Includes FREE delivery

RRP £49.99 – you save £5.00 (10%)

Order before 4pm today for delivery by Fri 16 Jan 2026.

A Paperback / softback by Herbert Lange

Out of stock


    View other formats and editions of Abelian Varieties over the Complex Numbers: A by Herbert Lange

    Publisher: Springer International Publishing AG
    Publication Date: 16/03/2023
    ISBN13: 9783031255694, 978-3031255694
    ISBN10: 3031255690

    Description

    Book Synopsis
    This textbook offers an introduction to abelian varieties, a rich topic of central importance to algebraic geometry. The emphasis is on geometric constructions over the complex numbers, notably the construction of important classes of abelian varieties and their algebraic cycles.
    The book begins with complex tori and their line bundles (theta functions), naturally leading to the definition of abelian varieties. After establishing basic properties, the moduli space of abelian varieties is introduced and studied. The next chapters are devoted to the study of the main examples of abelian varieties: Jacobian varieties, abelian surfaces, Albanese and Picard varieties, Prym varieties, and intermediate Jacobians. Subsequently, the Fourier–Mukai transform is introduced and applied to the study of sheaves, and results on Chow groups and the Hodge conjecture are obtained.
    This book is suitable for use as the main text for a first course on abelian varieties, for instance as a second graduate course in algebraic geometry. The variety of topics and abundant exercises also make it well suited to reading courses. The book provides an accessible reference, not only for students specializing in algebraic geometry but also in related subjects such as number theory, cryptography, mathematical physics, and integrable systems.

    Trade Review
    “The reorganization of the topics is fine surgical work. Several portions of the original monograph are sewn in a natural way in the new book, adding examples or additional text when necessary, and re-arranging the focus to make it a more friendly introduction to the subject. Careful attention to details and the required background makes the book under review accessible to an interested reader and could be a used as textbook for a course on abelian varieties.” (Felipe Zaldivar, MAA Reviews, June 18, 2023)

    Table of Contents
    1. Line Bundles on Complex Tori.- 2 Abelian Varieties.- 3 Moduli Spaces.- 4 Jacobian Varieties.- 5 Main Examples of Abelian Varieties.- 6 The Fourier Transform for Sheaves and Cycles.- 7 Introduction to the Hodge Conjecture for Abelian Varieties.

    Recently viewed products

    © 2026 Book Curl

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account