Description

Big Data Analytics is a field that dissects, efficiently extricates data from, or in any case manages informational indexes that are excessively huge or complex to be managed by customary information preparing application programming. Information with numerous cases (lines) offers more noteworthy factual force, while information with higher multifaceted nature may prompt a higher bogus disclosure rate. Enormous information challenges incorporate catching information, information stockpiling, information investigation, search, sharing, move, representation, and questioning, refreshing, data security and data source. Large information was initially connected with three key ideas: volume, variety and velocity. Consequently, huge information regularly incorporates information with sizes that surpass the limit of conventional programming to measure inside a satisfactory time and worth. Current utilisation of the term enormous information will in general allude to the utilisation of predictive analytics, user behaviour analytics, or certain other progressed information investigation techniques that concentrate an incentive from information, and sometimes to a specific size of informational index. There is little uncertainty that the amounts of information now accessible are undoubtedly enormous, however that is not the most important quality of this new information biological system. Investigation of informational indexes can discover new relationships to spot business patterns or models. Researchers, business-persons, clinical specialists, promoting and governments consistently meet challenges with huge informational collections in territories including Internet look, fintech, metropolitan informatics, and business informatics. Researchers experience constraints in e-Science work, including meteorology, genomics, connectomics, complex material science reproductions, science and ecological exploration. The main objective of this book is to write about issues, challenges, opportunities, and solutions in novel research projects about big data in various domains. The topics of interest include, but are not limited to: efficient storage, management and sharing large scale of data; novel approaches for analysing data using big data technologies; implementation of high performance and/or scalable and/or real-time computation algorithms for analysing big data; usage of various data sources like historical data, social networking media, machine data and crowd-sourcing data; using machine learning, visual analytics, data mining, spatio-temporal data analysis and statistical inference in different domains (with large scale datasets); Legal and ethical issues and solutions for using, sharing and publishing large datasets; and the results of data analytics, security and privacy issues.

A Closer Look at Big Data Analytics

Product form

£183.59

Includes FREE delivery
RRP: £203.99 You save £20.40 (10%)
Usually despatched within 3 days
Hardback by R. Anandan

1 in stock

Short Description:

Big Data Analytics is a field that dissects, efficiently extricates data from, or in any case manages informational indexes that... Read more

    Publisher: Nova Science Publishers Inc
    Publication Date: 01/05/2021
    ISBN13: 9781536193336, 978-1536193336
    ISBN10: 153619333X

    Number of Pages: 366

    Non Fiction , Computing

    Description

    Big Data Analytics is a field that dissects, efficiently extricates data from, or in any case manages informational indexes that are excessively huge or complex to be managed by customary information preparing application programming. Information with numerous cases (lines) offers more noteworthy factual force, while information with higher multifaceted nature may prompt a higher bogus disclosure rate. Enormous information challenges incorporate catching information, information stockpiling, information investigation, search, sharing, move, representation, and questioning, refreshing, data security and data source. Large information was initially connected with three key ideas: volume, variety and velocity. Consequently, huge information regularly incorporates information with sizes that surpass the limit of conventional programming to measure inside a satisfactory time and worth. Current utilisation of the term enormous information will in general allude to the utilisation of predictive analytics, user behaviour analytics, or certain other progressed information investigation techniques that concentrate an incentive from information, and sometimes to a specific size of informational index. There is little uncertainty that the amounts of information now accessible are undoubtedly enormous, however that is not the most important quality of this new information biological system. Investigation of informational indexes can discover new relationships to spot business patterns or models. Researchers, business-persons, clinical specialists, promoting and governments consistently meet challenges with huge informational collections in territories including Internet look, fintech, metropolitan informatics, and business informatics. Researchers experience constraints in e-Science work, including meteorology, genomics, connectomics, complex material science reproductions, science and ecological exploration. The main objective of this book is to write about issues, challenges, opportunities, and solutions in novel research projects about big data in various domains. The topics of interest include, but are not limited to: efficient storage, management and sharing large scale of data; novel approaches for analysing data using big data technologies; implementation of high performance and/or scalable and/or real-time computation algorithms for analysing big data; usage of various data sources like historical data, social networking media, machine data and crowd-sourcing data; using machine learning, visual analytics, data mining, spatio-temporal data analysis and statistical inference in different domains (with large scale datasets); Legal and ethical issues and solutions for using, sharing and publishing large datasets; and the results of data analytics, security and privacy issues.

    Customer Reviews

    Be the first to write a review
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)
    0%
    (0)

    Recently viewed products

    © 2025 Book Curl,

      • American Express
      • Apple Pay
      • Diners Club
      • Discover
      • Google Pay
      • Maestro
      • Mastercard
      • PayPal
      • Shop Pay
      • Union Pay
      • Visa

      Login

      Forgot your password?

      Don't have an account yet?
      Create account