Search results for ""author carsten carlberg""
Springer International Publishing AG Epigenetik des Menschen
Die Ansicht „Es liegt alles in unseren Genen und wir können es nicht ändern“ hat sich in den letzten 150 Jahren seit Gregor Mendels Experimenten mit blühenden Erbsenpflanzen entwickelt. Es gibt jedoch eine besondere Form der Genetik, die Epigenetik, bei der unsere Gene nicht verändert werden, sondern geregelt wird, wie und wann sie genutzt werden. Unsere Umwelt und Lebensstilentscheidungen beeinflussen die Epigenetik unserer Zellen und Organe, d. h. die Epigenetik verändert sich dynamisch während unseres gesamten Lebens. Wir haben also die Möglichkeit, unsere Epigenetik sowohl positiv als auch negativ zu verändern.In diesem Buch wird auf molekularer Ebene erklärt, wie unser Genom mit Umweltsignalen verbunden ist. Es zeigt auf, dass die epigenetische Programmierung ein Lernprozess ist, der zu einem epigenetischen Gedächtnis in jeder Zelle unseres Körpers führt. Die zentrale Bedeutung der Epigenetik während der Embryogenese und der zellulären Differenzierung sowie beim Alterungsprozess und dem Risiko für die Entstehung von Krebs werden erörtert. Darüber hinaus wird die Rolle des Epigenoms als molekularer Speicher für zelluläre Ereignisse nicht nur im Gehirn, sondern auch in Stoffwechselorganen und im Immunsystem beschrieben.Das Buch ist die Übersetzung des Lehrbuchs „Human Epigenetics: How Science Works“ (ISBN 978-3-030-22907-8) der Autoren. In den ersten fünf Kapiteln werden die molekularen Grundlagen der Epigenetik erläutert, während die folgenden sieben Kapitel Beispiele für die Auswirkungen der Epigenetik auf die menschliche Gesundheit und Krankheit liefern.
£27.99
Springer International Publishing AG Molecular Immunology: How Science Works
This textbook aims to describe in a condensed form the essentials of molecular immunology behind bacterial infections, the microbiome, viral infections (such as influenza and COVID-19), organ transplantations, autoimmunity, allergy and tumor immunology. The book emphasizes the impact of immunology in maintaining our health and preventing disease. Our immune system protects us not only from severe consequences of infectious diseases and getting cancer, but is also able to harm us severely via sepsis, cytokine storms and anaphylactic shocks. Molecular understanding of immunology should allow the reader a more rational handling of common diseases, most of which are associated with chronic inflammation.
£54.99
Springer Nature Switzerland AG Cancer Biology: How Science Works
Cancer is a collection of diseases that can affect basically every organ of our body, all of which have in common uncontrolled cellular growth. The cells forming our body have the potential to grow in the context of wound healing or for the constant replacement of cells in our blood, skin or intestine. Behind every newly diagnosed malignant tumor in adulthood there is an individual history of probably 20 or more years of tumorigenesis. Therefore, malignant tumor formation often takes time making cancer in most cases to an aging-related disease that we seem not to be able to evade. However, tumorigenesis is dependent on multiple environmental influences, many of which we have under control by lifestyle decisions, such as retaining from smoking, selecting healthy food and being physically active. Thus, cancer preventive interventions are the most effective way to fight against cancer. This textbook wants not only to describe basic mechanisms leading to cancer but also to provide the readers with a more holistic view including cancer surveaillance mechanisms of the immune system. We will place these insights in the context of the personal consequences of everyone’s lifestyle decisions. The content of the book is linked to the lecture course in “Cancer Biology”, which is given by Prof. Carlberg since 2005 at the University of Eastern Finland in Kuopio. Moreover, biological processes explained in this book will be set into a clinical context using the experience of Dr. Velleuer in the daily care in oncology. This book also relates to the textbooks “Mechanisms of Gene Regulation: How Science Works” (ISBN 978-3-030-52321-3), “Human Epigenetics: How Science Works” (ISBN 978-3-030-22907-8) and “Nutrigenomics: How Science Works” (ISBN 978-3-030-36948-4), the studying of which may be interesting to readers who like to get more detailed information.
£54.99
Springer Nature Switzerland AG Human Epigenetics: How Science Works
The view “It’s all in our genes and we cannot change it” developed in the past 150 years since Gregor Mendel’s experiments with flowering pea plants. However, there is a special form of genetics, referred to as epigenetics, which does not involve any change of our genes but regulates how and when they are used. In the cell nucleus our genes are packed into chromatin, which is a complex of histone proteins and genomic DNA, representing the molecular basis of epigenetics. Our environment and lifestyle decisions influence the epigenetics of our cells and organs, i.e. epigenetics changes dynamically throughout our whole life. Thus, we have the chance to change our epigenetics in a positive as well as negative way and present the onset of diseases, such a type 2 diabetes or cancer. This textbook provides a molecular explanation how our genome is connected with environmental signals. It outlines that epigenetic programming is a learning process that results in epigenetic memory in each of the cells of our body. The central importance of epigenetics during embryogenesis and cellular differentiation as well as in the process of aging and the risk for the development of cancer are discussed. Moreover, the role of the epigenome as a molecular storage of cellular events not only in the brain but also in metabolic organs and in the immune system is described. The book represents an updated but simplified version of our textbook “Human Epigenomics” (ISBN 978-981-10-7614-8). The first five chapters explain the molecular basis of epigenetics, while the following seven chapters provide examples for the impact of epigenetics in human health and disease.
£59.99
Springer Nature Switzerland AG Nutrigenomics: How Science Works
The fascinating area of Nutrigenomics describes this daily communication between our diet and our genome. This book describes how nutrition shapes human evolution and demonstrates its consequences for our susceptibility to diseases, such as diabetes and atherosclerosis. Inappropriate diet can yield stress for our cells, tissues and organs and then it is often associated with low-grade chronic inflammation. Overnutrition paired with physical inactivity leads to overweight and obesity and results in increased burden for a body that originally was adapted for a life in the savannahs of East Africa. Therefore, this textbook does not discuss a theoretical topic in science, but it talks about real life and our life-long “chat” with diet. We are all food consumers, thus each of us is concerned by the topic of this book and should be aware of its mechanisms.The purpose of this book is to provide an overview on the principles of nutrigenomics and their relation to health or disease. The content of this book is based on the lecture course “Nutrigenomics”, which is held since 2003 once per year by Prof. Carlberg at the University of Eastern Finland in Kuopio. The book represents an updated but simplified version of our textbook “Nutrigenomics” (ISBN 978-3-319-30413-7). Besides its value as a textbook, “Nutrigenomics: how science works” will be a useful reference for individuals working in biomedicine
£54.99
Springer International Publishing AG Molecular Medicine: How Science Works
The fascinating area of molecular medicine provides a molecular and cellular description of health and disease. Starting with the understanding of gene regulation and epigenetics, i.e., the interplay of transcription factors and chromatin, this book will provide an fundamental basis of nearly all processes in physiology, both in health as well as in most common disorders, such as cancer, diabetes as well as in autoimmune diseases. Most non-communicable human diseases have a genetic (= inherited) as well as an epigenetic component. The later one is based on our lifestyle choices and environmental exposures. Many common diseases, such as type 2 diabetes, can be explained only to some 20% via a genetic predisposition. We cannot change the genes that we are born with but we can take care of the remaining 80% being primarily based on our epigenome. Therefore, there is a high level of individual responsibility for staying healthy. Thus, not only biologists and biochemists should be aware of this topic, but all students of biomedical disciplines will benefit from being introduced into the concepts of molecular medicine. This will provide them with a good basis for their specialized disciplines of modern life science research. The book is subdivided into 42 chapters that are linked to a series of lecture courses in “Molecular Medicine and Genetics”, “Molecular Immunology”, “Cancer Biology” and “Nutrigenomics” that is given by one of us (C. Carlberg) in different forms since 2002 at the University of Eastern Finland in Kuopio. This book represents an updated version and fusion of the books textbooks “Mechanisms of Gene Regulation: How Science Works” (ISBN 978-3-030-52321-3), “Human Epigenetics: How Science Works” (ISBN 978-3-030-22907-8). “Molecular Immunology: How Science Works” (ISBN 978-3-031-04024-5), “Cancer Biology: How Science Works” (ISBN 978-3-030-75699-4) and “Nutrigenomics: How Science Works” (ISBN 978-3-030-36948-4). By combining basic understanding of cellular mechanism with clinical examples, the authors hope to make this textbook a personal experience. A glossary in the appendix will explain the major specialist’s terms.
£99.99
Springer Nature Switzerland AG Nutrigenomics: How Science Works
The fascinating area of Nutrigenomics describes this daily communication between our diet and our genome. This book describes how nutrition shapes human evolution and demonstrates its consequences for our susceptibility to diseases, such as diabetes and atherosclerosis. Inappropriate diet can yield stress for our cells, tissues and organs and then it is often associated with low-grade chronic inflammation. Overnutrition paired with physical inactivity leads to overweight and obesity and results in increased burden for a body that originally was adapted for a life in the savannahs of East Africa. Therefore, this textbook does not discuss a theoretical topic in science, but it talks about real life and our life-long “chat” with diet. We are all food consumers, thus each of us is concerned by the topic of this book and should be aware of its mechanisms.The purpose of this book is to provide an overview on the principles of nutrigenomics and their relation to health or disease. The content of this book is based on the lecture course “Nutrigenomics”, which is held since 2003 once per year by Prof. Carlberg at the University of Eastern Finland in Kuopio. The book represents an updated but simplified version of our textbook “Nutrigenomics” (ISBN 978-3-319-30413-7). Besides its value as a textbook, “Nutrigenomics: how science works” will be a useful reference for individuals working in biomedicine
£74.99