Search results for ""author alexander romanovsky""
Taylor & Francis Inc Trustworthy Cyber-Physical Systems Engineering
From the Foreword"Getting CPS dependability right is essential to forming a solid foundation for a world that increasingly depends on such systems. This book represents the cutting edge of what we know about rigorous ways to ensure that our CPS designs are trustworthy. I recommend it to anyone who wants to get a deep look at these concepts that will form a cornerstone for future CPS designs."--Phil Koopman, Carnegie Mellon University, Pittsburgh, Pennsylvania, USATrustworthy Cyber-Physical Systems Engineering provides practitioners and researchers with a comprehensive introduction to the area of trustworthy Cyber Physical Systems (CPS) engineering. Topics in this book cover questions such asWhat does having a trustworthy CPS actually mean for something as pervasive as a global-scale CPS? How does CPS trustworthiness map onto existing knowledge, and where do we need to know more? How can we mathematically prove timeliness, correctness, and other essential properties for systems that may be adaptive and even self-healing? How can we better represent the physical reality underlying real-world numeric quantities in the computing system? How can we establish, reason about, and ensure trust between CPS components that are designed, installed, maintained, and operated by different organizations, and which may never have really been intended to work together? Featuring contributions from leading international experts, the book contains sixteen self-contained chapters that analyze the challenges in developing trustworthy CPS, and identify important issues in developing engineering methods for CPS.The book addresses various issues contributing to trustworthiness complemented by contributions on TCSP roadmapping, taxonomy, and standardization, as well as experience in deploying advanced system engineering methods in industry. Specific approaches to ensuring trustworthiness, namely, proof and refinement, are covered, as well as engineering methods for dealing with hybrid aspects.
£105.00
World Scientific Publishing Co Pte Ltd Software Engineering Of Fault Tolerant Systems
In architecting dependable systems, what is required to improve the overall system robustness is fault tolerance. Many methods have been proposed to this end, the solutions are usually considered late during the design and implementation phases of the software life-cycle (e.g., Java and Windows NT exception handling), thus reducing the effectiveness error and fault handling. Since the system design typically models only normal behaviour of the system while ignoring exceptional ones, the implementation of the system is unable to handle abnormal events. Consequently, the system may fail in unexpected ways due to faults.It has been argued that fault tolerance management during the entire life-cycle improves the overall system robustness and that different classes of threats need to be identified for and dealt with at each distinct phase of software development, depending on the abstraction level of the software system being modelled.This book builds on this trend and investigates how fault tolerance mechanisms can be applied when engineering a software system. In particular, it identifies the new problems arising in this area, introduces the new models to be applied at different abstraction levels, defines methodologies for model-driven engineering of such systems and outlines the new technologies and validation and verification environments supporting this.
£149.00