Search results for ""Author Stefan Bilbao""
John Wiley & Sons Inc Wave and Scattering Methods for Numerical Simulation
Scattering-based numerical methods are increasingly applied to the numerical simulation of distributed time-dependent physical systems. These methods, which possess excellent stability and stability verification properties, have appeared in various guises as the transmission line matrix (TLM) method, multidimensional wave digital (MDWD) filtering and digital waveguide (DWN) methods. This text provides a unified framework for all of these techniques and addresses the question of how they are related to more standard numerical simulation techniques. Covering circuit/scattering models in electromagnetics, transmission line modelling, elastic dynamics, as well as time-varying and nonlinear systems, this book highlights the general applicability of this technique across a variety of disciplines, as well as the inter-relationships between simulation techniques and digital filter design. provides a comprehensive overview of scattering-based numerical integration methods. reviews the basics of classical electrical network theory, wave digital filters, and digital waveguide networks. discusses applications for time-varying and nonlinear systems. includes an extensive bibliography containing over 250 references. Mixing theory and application with numerical simulation results, this book will be suitable for both experts and readers with a limited background in signal processing and numerical techniques.
£140.95
John Wiley & Sons Inc Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics
Digital sound synthesis has long been approached using standard digital filtering techniques. Newer synthesis strategies, however, make use of physical descriptions of musical instruments, and allow for much more realistic and complex sound production and thereby synthesis becomes a problem of simulation. This book has a special focus on time domain finite difference methods presented within an audio framework. It covers time series and difference operators, and basic tools for the construction and analysis of finite difference schemes, including frequency-domain and energy-based methods, with special attention paid to problems inherent to sound synthesis. Various basic lumped systems and excitation mechanisms are covered, followed by a look at the 1D wave equation, linear bar and string vibration, acoustic tube modelling, and linear membrane and plate vibration. Various advanced topics, such as the nonlinear vibration of strings and plates, are given an elaborate treatment. Key features: Includes a historical overview of digital sound synthesis techniques, highlighting the links between the various physical modelling methodologies. A pedagogical presentation containing over 150 problems and programming exercises, and numerous figures and diagrams, and code fragments in the MATLAB® programming language helps the reader with limited experience of numerical methods reach an understanding of this subject. Offers a complete treatment of all of the major families of musical instruments, including certain audio effects. Numerical Sound Synthesis is suitable for audio and software engineers, and researchers in digital audio, sound synthesis and more general musical acoustics. Graduate students in electrical engineering, mechanical engineering or computer science, working on the more technical side of digital audio and sound synthesis, will also find this book of interest.
£108.95