Search results for ""Author Peter Belobaba""
John Wiley & Sons Inc Essentials of Supersonic Commercial Aircraft Conceptual Design
Provides comprehensive coverage of how supersonic commercial aircraft are designed This must-have guide to conceptual supersonic aircraft design provides a state-of-the art overview of the subject, along with expert analysis and discussion. It examines the challenges of high-speed flight, covers aerodynamic phenomena in supersonic flow and aerodynamic drag in cruising flight, and discusses the advantages and disadvantages of oblique wing aircraft. Essentials of Supersonic Commercial Aircraft Conceptual Design is intended for members of a team producing an initial design concept of an airliner with the capability of making supersonic cruising flights. It begins with a synopsis of the history of supersonic transport aircraft development and continues with a chapter on the challenges of high-speed flight, which discusses everything from top level requirements and cruise speed requirements to fuel efficiency and cruise altitude. It then covers weight sensitivity; aerodynamic phenomena in supersonic flow; thin wings in two-dimensional flow; flat wings in inviscid supersonic flow; aerodynamic drag in cruising flight, and aerodynamic efficiency of SCV configurations. The book finishes with a chapter that examines oblique wing aircraft. Provides supersonic aircraft designers with everything they need to know about developing current and future high speed commercial jet planes Examines the many challenges of high-speed flight Covers aerodynamic phenomena in supersonic flow and aerodynamic drag in cruising flight Discusses the advantages and disadvantages of oblique wing aircraft Essentials of Supersonic Commercial Aircraft Conceptual Design is an ideal book for researchers and practitioners in the aerospace industry, as well as for graduate students in aerospace engineering.
£95.95
John Wiley & Sons Inc Design and Development of Aircraft Systems
Provides a significant update to the definitive book on aircraft system design This book is written for anyone who wants to understand how industry develops the customer requirement for aircraft into a fully integrated, tested, and qualified product that is safe to fly and fit for purpose. The new edition of Design and Development of Aircraft Systems fully expands its already comprehensive coverage to include both conventional and unmanned systems. It also updates all chapters to bring them in line with current design practice and technologies taught in courses at Cranfield, Bristol, and Loughborough universities in the UK. Design and Development of Aircraft Systems, 3rd Edition begins with an introduction to the subject. It then introduces readers to the aircraft systems (airframe, vehicle, avionic, mission, and ground systems). Following that comes a chapter on the design and development process. Other chapters look at design drivers, systems architectures, systems integration, verification of system requirements, practical considerations, and configuration control. The book finishes with sections that discuss the potential impact of complexity on flight safety, key characteristics of aircraft systems, and more. Provides a holistic view of aircraft system design, describing the interactions among subsystems such as fuel, navigation, flight control, and more Substantially updated coverage of systems engineering, design drivers, systems architectures, systems integration, modelling of systems, practical considerations, and systems examples Incorporates essential new material on the regulatory environment for both manned and unmanned systems Discussion of trends towards complex systems, automation, integration and the potential for an impact on flight safety Design and Development of Aircraft Systems, 3rd Edition is an excellent book for aerospace engineers, researchers, and graduate students involved in the field.
£108.95
John Wiley & Sons Inc Future Propulsion Systems and Energy Sources in Sustainable Aviation
A comprehensive review of the science and engineering behind future propulsion systems and energy sources in sustainable aviation Future Propulsion Systems and Energy Sources in Sustainable Aviation is a comprehensive reference that offers a review of the science and engineering principles that underpin the concepts of propulsion systems and energy sources in sustainable air transportation. The author, a noted expert in the field, examines the impact of air transportation on the environment and reviews alternative jet fuels, hybrid-electric and nuclear propulsion and power. He also explores modern propulsion for transonic and supersonic-hypersonic aircraft and the impact of propulsion on aircraft design. Climate change is the main driver for the new technology development in sustainable air transportation. The book contains critical review of gas turbine propulsion and aircraft aerodynamics; followed by an insightful presentation of the aviation impact on environment. Future fuels and energy sources are introduced in a separate chapter. Promising technologies in propulsion and energy sources are identified leading to pathways to sustainable aviation. To facilitate the utility of the subject, the book is accompanied by a website that contains illustrations, and equation files. This important book: Contains a comprehensive reference to the science and engineering behind propulsion and power in sustainable air transportation Examines the impact of air transportation on the environment Covers alternative jet fuels and hybrid-electric propulsion and power Discusses modern propulsion for transonic, supersonic and hypersonic aircraft Examines the impact of propulsion system integration on aircraft design Written for engineers, graduate and senior undergraduate students in mechanical and aerospace engineering, Future Propulsion Systems and Energy Sources in Sustainable Aviation explores the future of aviation with a guide to sustainable air transportation that includes alternative jet fuels, hybrid-electric propulsion, all-electric and nuclear propulsion.
£96.95
John Wiley & Sons Inc Sustainable Aviation Technology and Operations: Research and Innovation Perspectives
Sustainable Aviation Technology and Operations Comprehensively covers research and development initiatives to enhance the environmental sustainability of the??aviation sector Sustainable Aviation Technology and Operations provides a comprehensive and timely outlook of recent research advances in aeronautics and air transport, with emphasis on both long-term sustainable development goals and current achievements. This book discusses some of the most promising advances in aircraft technologies, air traffic management and systems engineering methodologies for sustainable aviation. The topics covered include: propulsion, aerodynamics, avionics, structures, materials, airspace management, biofuels and sustainable lifecycle management. The physical processes associated with various aircraft emissions — including air pollutants, noise and contrails — are presented to support the development of computational models for aircraft design, flight path optimization and environmental impact assessment. Relevant advances in systems engineering and lifecycle management processes are also covered, bridging some of the existing gaps between academic research and industry best practices. A collection of research case studies complements the book, highlighting opportunities for a timely uptake of the most promising technologies, towards a more efficient and environmentally sustainable aviation future. Key features: Contains important research and industry relevant contributions from world-class experts. Addresses recent advances in aviation sustainability including multidisciplinary design approaches and multi-objective operational optimisation methods. Includes a number of research case studies, addressing propulsion, aerostructures, alternative aviation fuels, avionics, air traffic management, and sustainable lifecycle management solutions. Sustainable Aviation Technology and Operations is an excellent book for aerospace engineers, aviation scientists, researchers and graduate students involved in the field.
£88.95
John Wiley & Sons Inc The Global Airline Industry
Extensively revised and updated edition of the bestselling textbook, provides an overview of recent global airline industry evolution and future challenges Examines the perspectives of the many stakeholders in the global airline industry, including airlines, airports, air traffic services, governments, labor unions, in addition to passengers Describes how these different players have contributed to the evolution of competition in the global airline industry, and the implications for its future evolution Includes many facets of the airline industry not covered elsewhere in any single book, for example, safety and security, labor relations and environmental impacts of aviation Highlights recent developments such as changing airline business models, growth of emerging airlines, plans for modernizing air traffic management, and opportunities offered by new information technologies for ticket distribution Provides detailed data on airline performance and economics updated through 2013
£76.95
John Wiley & Sons Inc Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes
Although the overall appearance of modern airliners has not changed a lot since the introduction of jetliners in the 1950s, their safety, efficiency and environmental friendliness have improved considerably. Main contributors to this have been gas turbine engine technology, advanced materials, computational aerodynamics, advanced structural analysis and on-board systems. Since aircraft design became a highly multidisciplinary activity, the development of multidisciplinary optimization (MDO) has become a popular new discipline. Despite this, the application of MDO during the conceptual design phase is not yet widespread. Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes presents a quasi-analytical optimization approach based on a concise set of sizing equations. Objectives are aerodynamic efficiency, mission fuel, empty weight and maximum takeoff weight. Independent design variables studied include design cruise altitude, wing area and span and thrust or power loading. Principal features of integrated concepts such as the blended wing and body and highly non-planar wings are also covered. The quasi-analytical approach enables designers to compare the results of high-fidelity MDO optimization with lower-fidelity methods which need far less computational effort. Another advantage to this approach is that it can provide answers to “what if” questions rapidly and with little computational cost. Key features: Presents a new fundamental vision on conceptual airplane design optimization Provides an overview of advanced technologies for propulsion and reducing aerodynamic drag Offers insight into the derivation of design sensitivity information Emphasizes design based on first principles Considers pros and cons of innovative configurations Reconsiders optimum cruise performance at transonic Mach numbers Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes advances understanding of the initial optimization of civil airplanes and is a must-have reference for aerospace engineering students, applied researchers, aircraft design engineers and analysts.
£86.95
John Wiley & Sons Inc Air Travel and Health: A Systems Perspective
Providing a detailed examination of the issues that affect the long term health of aircrew, cabin crew and passengers, Air Travel and Health offers guidance to engineers designing aircraft in the difficult field of legislation and product liability. Examining the facts, anecdotes and myths associated with health and travel, Seabridge and Morgan draw balanced conclusions on which the aircraft operations and design communities can act to provide cost-effective solutions. The authors present a useful reference for aircrew, regulatory authorities, engineers and managers within the aerospace industry, and medical and human factor specialists, as well as an informative resource for undergraduate and graduate students.
£90.67
John Wiley & Sons Inc Modeling the Effect of Damage in Composite Structures: Simplified Approaches
Comprehensively covers new and existing methods for the design and analysis of composites structures with damage present Provides efficient and accurate approaches for analysing structures with holes and impact damage Introduces a new methodology for fatigue analysis of composites Provides design guidelines, and step by step descriptions of how to apply the methods, along with evaluation of their accuracy and applicability Includes problems and exercises Accompanied by a website hosting lecture slides and solutions
£80.95
John Wiley & Sons Inc Introduction to Aerospace Engineering with a Flight Test Perspective
Comprehensive textbook which introduces the fundamentals of aerospace engineering with a flight test perspective Introduction to Aerospace Engineering with a Flight Test Perspective is an introductory level text in aerospace engineering with a unique flight test perspective. Flight test, where dreams of aircraft and space vehicles actually take to the sky, is the bottom line in the application of aerospace engineering theories and principles. Designing and flying the real machines are often the reasons that these theories and principles were developed. This book provides a solid foundation in many of the fundamentals of aerospace engineering, while illuminating many aspects of real-world flight. Fundamental aerospace engineering subjects that are covered include aerodynamics, propulsion, performance, and stability and control. Key features: Covers aerodynamics, propulsion, performance, and stability and control. Includes self-contained sections on ground and flight test techniques. Includes worked example problems and homework problems. Suitable for introductory courses on Aerospace Engineering. Excellent resource for courses on flight testing. Introduction to Aerospace Engineering with a Flight Test Perspective is essential reading for undergraduate and graduate students in aerospace engineering, as well as practitioners in industry. It is an exciting and illuminating read for the aviation enthusiast seeking deeper understanding of flying machines and flight test.
£83.95
John Wiley & Sons Inc Aircraft Flight Dynamics and Control
Aircraft Flight Dynamics and Control addresses airplane flight dynamics and control in a largely classical manner, but with references to modern treatment throughout. Classical feedback control methods are illustrated with relevant examples, and current trends in control are presented by introductions to dynamic inversion and control allocation. This book covers the physical and mathematical fundamentals of aircraft flight dynamics as well as more advanced theory enabling a better insight into nonlinear dynamics. This leads to a useful introduction to automatic flight control and stability augmentation systems with discussion of the theory behind their design, and the limitations of the systems. The author provides a rigorous development of theory and derivations and illustrates the equations of motion in both scalar and matrix notation. Key features: Classical development and modern treatment of flight dynamics and control Detailed and rigorous exposition and examples, with illustrations Presentation of important trends in modern flight control systems Accessible introduction to control allocation based on the author's seminal work in the field Development of sensitivity analysis to determine the influential states in an airplane's response modes End of chapter problems with solutions available on an accompanying website Written by an author with experience as an engineering test pilot as well as a university professor, Aircraft Flight Dynamics and Control provides the reader with a systematic development of the insights and tools necessary for further work in related fields of flight dynamics and control. It is an ideal course textbook and is also a valuable reference for many of the necessary basic formulations of the math and science underlying flight dynamics and control.
£87.95
John Wiley & Sons Inc Introduction to Nonlinear Aeroelasticity
Introduction to Nonlinear Aeroelasticity Introduces the latest developments and technologies in the area of nonlinear aeroelasticity Nonlinear aeroelasticity has become an increasingly popular research area in recent years. There have been many driving forces behind this development, increasingly flexible structures, nonlinear control laws, materials with nonlinear characteristics and so on. Introduction to Nonlinear Aeroelasticity covers the theoretical basics in nonlinear aeroelasticity and applies the theory to practical problems. As nonlinear aeroelasticity is a combined topic, necessitating expertise from different areas, the book introduces methodologies from a variety of disciplines such as nonlinear dynamics, bifurcation analysis, unsteady aerodynamics, non-smooth systems and others. The emphasis throughout is on the practical application of the theories and methods, so as to enable the reader to apply their newly acquired knowledge Key features: Covers the major topics in nonlinear aeroelasticity, from the galloping of cables to supersonic panel flutter Discusses nonlinear dynamics, bifurcation analysis, numerical continuation, unsteady aerodynamics and non-smooth systems Considers the practical application of the theories and methods Covers nonlinear dynamics, bifurcation analysis and numerical methods Accompanied by a website hosting Matlab code Introduction to Nonlinear Aeroelasticity is a comprehensive reference for researchers and workers in industry and is also a useful introduction to the subject for graduate and undergraduate students across engineering disciplines.
£93.95
John Wiley & Sons Inc Space Flight Dynamics
Thorough coverage of space flight topics with self-contained chapters serving a variety of courses in orbital mechanics, spacecraft dynamics, and astronautics This concise yet comprehensive book on space flight dynamics addresses all phases of a space mission: getting to space (launch trajectories), satellite motion in space (orbital motion, orbit transfers, attitude dynamics), and returning from space (entry flight mechanics). It focuses on orbital mechanics with emphasis on two-body motion, orbit determination, and orbital maneuvers with applications in Earth-centered missions and interplanetary missions. Space Flight Dynamics presents wide-ranging information on a host of topics not always covered in competing books. It discusses relative motion, entry flight mechanics, low-thrust transfers, rocket propulsion fundamentals, attitude dynamics, and attitude control. The book is filled with illustrated concepts and real-world examples drawn from the space industry. Additionally, the book includes a “computational toolbox” composed of MATLAB M-files for performing space mission analysis. Key features: Provides practical, real-world examples illustrating key concepts throughout the book Accompanied by a website containing MATLAB M-files for conducting space mission analysis Presents numerous space flight topics absent in competing titles Space Flight Dynamics is a welcome addition to the field, ideally suited for upper-level undergraduate and graduate students studying aerospace engineering.
£84.95
John Wiley & Sons Inc Basic Helicopter Aerodynamics
Basic Helicopter Aerodynamics is widely appreciated as an easily accessible, rounded introduction to the first principles of the aerodynamics of helicopter flight. Simon Newman has brought this third edition completely up to date with a full new set of illustrations and imagery. An accompanying website www.wiley.com/go/seddon contains all the calculation files used in the book, problems, solutions, PPT slides and supporting MATLAB® code. Simon Newman addresses the unique considerations applicable to rotor UAVs and MAVs, and coverage of blade dynamics is expanded to include both flapping, lagging and ground resonance. New material is included on blade tip design, flow characteristics surrounding the rotor in forward flight, tail rotors, brown-out, blade sailing and shipborne operations. Concentrating on the well-known Sikorsky configuration of single main rotor with tail rotor, early chapters deal with the aerodynamics of the rotor in hover, vertical flight, forward flight and climb. Analysis of these motions is developed to the stage of obtaining the principal results for thrust, power and associated quantities. Later chapters turn to the characteristics of the overall helicopter, its performance, stability and control, and the important field of aerodynamic research is discussed, with some reference also to aerodynamic design practice. This introductory level treatment to the aerodynamics of helicopter flight will appeal to aircraft design engineers and undergraduate and graduate students in aircraft design, as well as practising engineers looking for an introduction to or refresher course on the subject.
£66.95
John Wiley & Sons Inc Adaptive Aeroservoelastic Control
This is the first book on adaptive aeroservoelasticity and it presents the nonlinear and recursive techniques for adaptively controlling the uncertain aeroelastic dynamics Covers both linear and nonlinear control methods in a comprehensive manner Mathematical presentation of adaptive control concepts is rigorous Several novel applications of adaptive control presented here are not to be found in other literature on the topic Many realistic design examples are covered, ranging from adaptive flutter suppression of wings to the adaptive control of transonic limit-cycle oscillations
£116.97
John Wiley & Sons Inc Aircraft Systems Classifications: A Handbook of Characteristics and Design Guidelines
Aircraft Systems Classifications Enables aerospace professionals to quickly and accurately reference key information about all types of aircraft systems Aircraft Systems Classifications: A Handbook of Characteristics and Design Guidelines provides comprehensive information on aircraft systems delivered in a concise, direct, and standardized way, allowing readers to easily find the information they need. The book presents a full set of characteristics and requirements for all types of aircraft systems, including avionic, mission, and supporting ground systems, in a single volume. Readers can delve further into specific topics by referencing the detailed glossary and bibliography. To aid in reader comprehension, each aircraft system is broken down according to various criteria, such as: Purpose, description, and safety Integration with other systems Key interfaces and design drivers Modeling and simulation Best practices and future trends Written for aerospace professionals, researchers, and advanced students with some existing knowledge of the aircraft industry, this book allows readers to quickly reference information on every aspect of aircraft systems.
£120.95
John Wiley & Sons Inc Flight Simulation Software: Design, Development and Testing
Flight Simulation Software Explains the many aspects of flight simulator design, including open source tools for developing an engineering flight simulator Flight simulation is an indispensable technology for civil and military aviation and the aerospace industry. Real-time simulation tools span across all aspects of aircraft development, from aerodynamics and flight dynamics to avionics and image generation systems. Knowledge of flight simulation software is vital for aerospace engineering professionals, educators, and students. Flight Simulation Software contains comprehensive and up-to-date coverage of the computer tools required to design and develop a flight simulator. Written by a noted expert with decades of experience developing flight simulators in academia, this highly practical resource enables readers to develop their own simulations with readily available open source software rather than relying on costly commercial simulation packages. The book features working software taken from operational flight simulators and provides step-by-step guidance on software design, computer graphics, parallel processing, aircraft equations of motion, navigation and flight control systems, and more. Explains both fundamental theory and real-world practice of simulation in engineering design Covers a wide range of topics, including coding standards, software validation, user interface design, and sensor modelling Describes techniques used in modern flight simulation including distributed architectures and the use of GPUs for real-time graphics rendering Addresses unique aspects of flight simulation such as designing flight control systems, visual systems, and simulator instructor stations Includes a companion website with downloadable open-source software and additional resources Flight Simulation Software is a must-have guide for all developers and users of simulation tools, as well as the ideal textbook for relevant undergraduate and postgraduate courses in computer science, aeronautical engineering, electrical engineering, and mechanical engineering programs.
£92.50
John Wiley & Sons Inc Advanced Control of Aircraft, Spacecraft and Rockets
Advanced Control of Aircraft, Spacecraft and Rockets introduces the reader to the concepts of modern control theory applied to the design and analysis of general flight control systems in a concise and mathematically rigorous style. It presents a comprehensive treatment of both atmospheric and space flight control systems including aircraft, rockets (missiles and launch vehicles), entry vehicles and spacecraft (both orbital and attitude control). The broad coverage of topics emphasizes the synergies among the various flight control systems and attempts to show their evolution from the same set of physical principles as well as their design and analysis by similar mathematical tools. In addition, this book presents state-of-art control system design methods - including multivariable, optimal, robust, digital and nonlinear strategies - as applied to modern flight control systems. Advanced Control of Aircraft, Spacecraft and Rockets features worked examples and problems at the end of each chapter as well as a number of MATLAB / Simulink examples housed on an accompanying website at http://home.iitk.ac.in/~ashtew that are realistic and representative of the state-of-the-art in flight control.
£79.95
John Wiley & Sons Inc Gas Turbine Propulsion Systems
Major changes in gas turbine design, especially in the design and complexity of engine control systems, have led to the need for an up to date, systems-oriented treatment of gas turbine propulsion. Pulling together all of the systems and subsystems associated with gas turbine engines in aircraft and marine applications, Gas Turbine Propulsion Systems discusses the latest developments in the field. Chapters include aircraft engine systems functional overview, marine propulsion systems, fuel control and power management systems, engine lubrication and scavenging systems, nacelle and ancillary systems, engine certification, unique engine systems and future developments in gas turbine propulsion systems. The authors also present examples of specific engines and applications. Written from a wholly practical perspective by two authors with long careers in the gas turbine & fuel systems industries, Gas Turbine Propulsion Systems provides an excellent resource for project and program managers in the gas turbine engine community, the aircraft OEM community, and tier 1 equipment suppliers in Europe and the United States. It also offers a useful reference for students and researchers in aerospace engineering.
£97.95
John Wiley & Sons Inc Aircraft Design: A Systems Engineering Approach
A comprehensive approach to the air vehicle design process using the principles of systems engineering Due to the high cost and the risks associated with development, complex aircraft systems have become a prime candidate for the adoption of systems engineering methodologies. This book presents the entire process of aircraft design based on a systems engineering approach from conceptual design phase, through to preliminary design phase and to detail design phase. Presenting in one volume the methodologies behind aircraft design, this book covers the components and the issues affected by design procedures. The basic topics that are essential to the process, such as aerodynamics, flight stability and control, aero-structure, and aircraft performance are reviewed in various chapters where required. Based on these fundamentals and design requirements, the author explains the design process in a holistic manner to emphasise the integration of the individual components into the overall design. Throughout the book the various design options are considered and weighed against each other, to give readers a practical understanding of the process overall. Readers with knowledge of the fundamental concepts of aerodynamics, propulsion, aero-structure, and flight dynamics will find this book ideal to progress towards the next stage in their understanding of the topic. Furthermore, the broad variety of design techniques covered ensures that readers have the freedom and flexibility to satisfy the design requirements when approaching real-world projects. Key features: • Provides full coverage of the design aspects of an air vehicle including: aeronautical concepts, design techniques and design flowcharts • Features end of chapter problems to reinforce the learning process as well as fully solved design examples at component level • Includes fundamental explanations for aeronautical engineering students and practicing engineers • Features a solutions manual to sample questions on the book’s companion website Companion website - www.wiley.com/go/sadraey
£108.95
John Wiley & Sons Inc Principles of Flight for Pilots
Organised and written as an accessible study guide for student pilots wishing to take commercial ground examinations to obtain ATPL or CPL licenses, Principles of Flight for Pilots also provides a reliable up-to-date reference for qualified and experienced personnel wishing to further improve their understanding of the Principles of Flight and related subjects. Providing a unique aerodynamics reference tool, unlike any book previously Principles of Flight for Pilots explains in significant depth all the topics necessary to pass the Principles of Flight examination as required by the EASA syllabus. Aviation ground instructor Peter J. Swatton, well reputed for his previous works in the field of pilot ground training, presents the subject in seven parts including basic aerodynamics; level flight aerodynamics; stability; manoeuvre aerodynamics; and other aerodynamic considerations. Each chapter includes self-assessed questions, 848 in total spread over eighteen chapters, with solutions provided at the end of the book containing full calculations and explanations.
£64.95
John Wiley & Sons Inc Differential Game Theory with Applications to Missiles and Autonomous Systems Guidance
Differential Game Theory with Applications to Missiles and Autonomous Systems explains the use of differential game theory in autonomous guidance and control systems. The book begins with an introduction to the basic principles before considering optimum control and game theory. Two-party and multi-party game theory and guidance are then covered and, finally, the theory is demonstrated through simulation examples and models and the simulation results are discussed. Recent developments in the area of guidance and autonomous systems are also presented. Key features: Presents new developments and how they relate to established control systems knowledge. Demonstrates the theory through simulation examples and models. Covers two-party and multi-party game theory and guidance. Accompanied by a website hosting MATLAB® code. The book is essential reading for researchers and practitioners in the aerospace and defence industries as well as graduate students in aerospace engineering.
£102.95
John Wiley & Sons Inc Advanced UAV Aerodynamics, Flight Stability and Control: Novel Concepts, Theory and Applications
Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.
£117.95
John Wiley & Sons Inc Theoretical and Computational Aerodynamics
Aerodynamics has seen many developments due to the growth of scientific computing, which has caused the design cycle time of aerospace vehicles to be heavily reduced. Today computational aerodynamics appears in the preliminary step of a new design, relegating costly, time-consuming wind tunnel testing to the final stages of design. Theoretical and Computational Aerodynamics is aimed to be a comprehensive textbook, covering classical aerodynamic theories and recent applications made possible by computational aerodynamics. It starts with a discussion on lift and drag from an overall dynamical approach, and after stating the governing Navier-Stokes equation, covers potential flows and panel method. Low aspect ratio and delta wings (including vortex breakdown) are also discussed in detail, and after introducing boundary layer theory, computational aerodynamics is covered for DNS and LES. Other topics covered are on flow transition to analyse NLF airfoils, bypass transition, streamwise and cross-flow instability over swept wings, viscous transonic flow over airfoils, low Reynolds number aerodynamics, high lift devices and flow control. Key features: Blends classical theories of incompressible aerodynamics to panel methods Covers lifting surface theories and low aspect ratio wing and wing-body aerodynamics Presents computational aerodynamics from first principles for incompressible and compressible flows Covers unsteady and low Reynolds number aerodynamics Includes an up-to-date account of DNS of airfoil aerodynamics including flow transition for NLF airfoils Contains chapter problems and illustrative examples Accompanied by a website hosting problems and a solution manual Theoretical and Computational Aerodynamics is an ideal textbook for undergraduate and graduate students, and is also aimed to be a useful resource book on aerodynamics for researchers and practitioners in the research labs and the industry.
£73.95
John Wiley & Sons Inc Introduction to Aircraft Aeroelasticity and Loads
Introduction to Aircraft Aeroelasticity and Loads, Second Edition is an updated new edition offering comprehensive coverage of the main principles of aircraft aeroelasticity and loads. For ease of reference, the book is divided into three parts and begins by reviewing the underlying disciplines of vibrations, aerodynamics, loads and control, and then goes on to describe simplified models to illustrate aeroelastic behaviour and aircraft response and loads for the flexible aircraft before introducing some more advanced methodologies. Finally, it explains how industrial certification requirements for aeroelasticity and loads may be met and relates these to the earlier theoretical approaches used. Key features of this new edition include: Uses a unified simple aeroelastic model throughout the book Major revisions to chapters on aeroelasticity Updates and reorganisation of chapters involving Finite Elements Some reorganisation of loads material Updates on certification requirements Accompanied by a website containing a solutions manual, and MATLAB® and SIMULINK® programs that relate to the models used Introduction to Aircraft Aeroelasticity and Loads, Second Edition is a must-have reference for researchers and practitioners working in the aeroelasticity and loads fields, and is also an excellent textbook for senior undergraduate and graduate students in aerospace engineering.
£87.95
John Wiley & Sons Inc Aerospace Propulsion
Aerospace propulsion devices embody some of the most advanced technologies, ranging from materials, fluid control, and heat transfer and combustion. In order to maximize the performance, sophisticated testing and computer simulation tools are developed and used. Aerospace Propulsion comprehensively covers the mechanics and thermal-fluid aspects of aerospace propulsion, starting from the fundamental principles, and covering applications to gas-turbine and space propulsion (rocket) systems. It presents modern analytical methods using MATLAB and other advanced software and includes essential elements of both gas-turbine and rocket propulsion systems. Gas turbine coverage includes thermodynamic analysis, turbine components, diffusers, compressors, turbines, nozzles, compressor-turbine matching, combustors and afterburners. Rocket coverage includes chemical rockets, electrical rockets, nuclear and solar sail. Key features: Both gas-turbine and rocket propulsion covered in a single volume Presents modern analytical methods and examples Combines fundamentals and applications, including space applications Accompanied by a website containing MATLAB examples, problem sets and solutions Aerospace Propulsion is a comprehensive textbook for senior undergraduate graduate and aerospace propulsion courses, and is also an excellent reference for researchers and practicing engineers working in this area.
£71.95
John Wiley & Sons Inc Aircraft Systems Integration of Air-Launched Weapons
From the earliest days of aviation where the pilot would drop simple bombs by hand, to the highly agile, stealthy aircraft of today that can deliver smart ordnance with extreme accuracy, engineers have striven to develop the capability to deliver weapons against targets reliably, safely and with precision. Aircraft Systems Integration of Air-Launched Weapons introduces the various aspects of weapons integration, primarily from the aircraft systems integration viewpoint, but also considers key parts of the weapon and the desired interactions with the aircraft required for successful target engagement. Key features: Addresses the broad range of subjects that relate directly to the systems integration of air-launched weapons with aircraft, such as the integration process, system and subsystem architectures, the essential contribution that open, international standards have on improving interoperability and reducing integration costs and timescales Describes the recent history of how industry and bodies such as NATO have driven the need for greater interoperability between weapons and aircraft and worked to reduce the cost and timescales associated with the systems integration of complex air-launched weapons with aircraft Explores future initiatives and technologies relating to the reduction of systems integration costs and timescales The systems integration of air-launched weapons with aircraft requires a multi-disciplinary set of engineering capabilities. As a typical weapons integration life-cycle spans several years, new engineers have to learn the skills required by on-the-job training and working with experienced weapons integrators. Aircraft Systems Integration of Air-Launched Weapons augments hands-on experience, thereby enabling the development of subject matter expertise more quickly and in a broader context than would be achieved by working through the life-cycle on one specific project. This book also serves as a useful revision source for experienced engineers in the field.
£97.95
John Wiley & Sons Inc Design of Unmanned Aerial Systems
Provides a comprehensive introduction to the design and analysis of unmanned aircraft systems with a systems perspective Written for students and engineers who are new to the field of unmanned aerial vehicle design, this book teaches the many UAV design techniques being used today and demonstrates how to apply aeronautical science concepts to their design. Design of Unmanned Aerial Systems covers the design of UAVs in three sections—vehicle design, autopilot design, and ground systems design—in a way that allows readers to fully comprehend the science behind the subject so that they can then demonstrate creativity in the application of these concepts on their own. It teaches students and engineers all about: UAV classifications, design groups, design requirements, mission planning, conceptual design, detail design, and design procedures. It provides them with in-depth knowledge of ground stations, power systems, propulsion systems, automatic flight control systems, guidance systems, navigation systems, and launch and recovery systems. Students will also learn about payloads, manufacturing considerations, design challenges, flight software, microcontroller, and design examples. In addition, the book places major emphasis on the automatic flight control systems and autopilots. Provides design steps and procedures for each major component Presents several fully solved, step-by-step examples at component level Includes numerous UAV figures/images to emphasize the application of the concepts Describes real stories that stress the significance of safety in UAV design Offers various UAV configurations, geometries, and weight data to demonstrate the real-world applications and examples Covers a variety of design techniques/processes such that the designer has freedom and flexibility to satisfy the design requirements in several ways Features many end-of-chapter problems for readers to practice Design of Unmanned Aerial Systems is an excellent text for courses in the design of unmanned aerial vehicles at both the upper division undergraduate and beginning graduate levels.
£114.95
John Wiley & Sons Inc Aircraft Aerodynamic Design: Geometry and Optimization
Optimal aircraft design is impossible without a parametric representation of the geometry of the airframe. We need a mathematical model equipped with a set of controls, or design variables, which generates different candidate airframe shapes in response to changes in the values of these variables. This model's objectives are to be flexible and concise, and capable of yielding a wide range of shapes with a minimum number of design variables. Moreover, the process of converting these variables into aircraft geometries must be robust. Alas, flexibility, conciseness and robustness can seldom be achieved simultaneously. Aircraft Aerodynamic Design: Geometry and Optimization addresses this problem by navigating the subtle trade-offs between the competing objectives of geometry parameterization. It beginswith the fundamentals of geometry-centred aircraft design, followed by a review of the building blocks of computational geometries, the curve and surface formulations at the heart of aircraft geometry. The authors then cover a range of legacy formulations in the build-up towards a discussion of the most flexible shape models used in aerodynamic design (with a focus on lift generating surfaces). The book takes a practical approach and includes MATLAB®, Python and Rhinoceros® code, as well as ‘real-life’ example case studies. Key features: Covers effective geometry parameterization within the context of design optimization Demonstrates how geometry parameterization is an important element of modern aircraft design Includes code and case studies which enable the reader to apply each theoretical concept either as an aid to understanding or as a building block of their own geometry model Accompanied by a website hosting codes Aircraft Aerodynamic Design: Geometry and Optimization is a practical guide for researchers and practitioners in the aerospace industry, and a reference for graduate and undergraduate students in aircraft design and multidisciplinary design optimization.
£81.95
John Wiley & Sons Inc Scramjet Propulsion: A Practical Introduction
Scramjet Propulsion Explore the cutting edge of HAP technologies with this comprehensive resource from an international leader in her field Scramjet Propulsion: A Practical Introduction delivers a comprehensive treatment of hypersonic air breathing propulsion and its applications. The book covers the most up-to-date hypersonic technologies, like endothermic fuels, fuel injection and flameholding systems, high temperature materials, and TPS, and offers technological overviews of hypersonic flight platforms like the X-43A, X-51A, and HiFIRE. It is organized around easy-to-understand explanations of technical challenges and provides extensive references for the information contained within. The highly accomplished author provides readers with a fulsome description of the theoretical underpinnings of hypersonic technologies, as well as critical design and technology issues affecting hypersonic air breathing propulsion technologies. The book’s combination of introductory theory and advanced instruction about individual hypersonic engine components is ideal for students and practitioners in fields as diverse as hypersonic vehicle and propulsion development for missile defense technologies, launch aerospaceplanes, and civilian transports. Over 250 illustrations and tables round out the material. Readers will also learn from: A thorough introduction to hypersonic flight, hypersonic vehicle concepts, and a review of fundamental principles in hypersonic air breathing propulsion Explorations of the aerothermodynamics of scramjet engines and the design of scramjet components, as well as hypersonic air breathing propulsion combustors and fuels Analyses of dual-mode combustion phenomena, materials structures, and thermal management in hypersonic vehicles, and combined cycle propulsion An examination of CFD analysis, ground and flight testing, and simulation Perfect for researchers and graduate students in aerospace engineering, Scramjet Propulsion: A Practical Introduction is also an indispensable addition to the libraries of engineers working on hypersonic vehicle development seeking a state-of-the-art resource in one of the most potentially disruptive areas of aerospace research today.
£115.00
John Wiley & Sons Inc Foundations of Space Dynamics
An introduction to orbital mechanics and spacecraft attitude dynamics Foundations of Space Dynamics offers an authoritative text that combines a comprehensive review of both orbital mechanics and dynamics. The author a noted expert in the field covers up-to-date topics including: orbital perturbations, Lambert's transfer, formation flying, and gravity-gradient stabilization. The text provides an introduction to space dynamics in its entirety, including important analytical derivations and practical space flight examples. Written in an accessible and concise style, Foundations of Space Dynamics highlights analytical development and rigor, rather than numerical solutions via ready-made computer codes. To enhance learning, the book is filled with helpful tables, figures, exercises, and solved examples. This important book: Covers space dynamics with a systematic and comprehensive approach Is designed to be a practical text filled with real-world examples Contains information on the most current applications Includes up-to-date topics from orbital perturbations to gravity- gradient stabilization Offers a deep understanding of space dynamics often lacking in other textbooks Written for undergraduate and graduate students and professionals in aerospace engineering, Foundations of Space Dynamics offers an introduction to the most current information on orbital mechanics and dynamics.
£69.95
John Wiley & Sons Inc Sense and Avoid in UAS: Research and Applications
There is increasing interest in the potential of UAV (Unmanned Aerial Vehicle) and MAV (Micro Air Vehicle) technology and their wide ranging applications including defence missions, reconnaissance and surveillance, border patrol, disaster zone assessment and atmospheric research. High investment levels from the military sector globally is driving research and development and increasing the viability of autonomous platforms as replacements for the remotely piloted vehicles more commonly in use. UAV/UAS pose a number of new challenges, with the autonomy and in particular collision avoidance, detect and avoid, or sense and avoid, as the most challenging one, involving both regulatory and technical issues. Sense and Avoid in UAS: Research and Applications covers the problem of detect, sense and avoid in UAS (Unmanned Aircraft Systems) in depth and combines the theoretical and application results by leading academics and researchers from industry and academia. Key features: Presents a holistic view of the sense and avoid problem in the wider application of autonomous systems Includes information on human factors, regulatory issues and navigation, control, aerodynamics and physics aspects of the sense and avoid problem in UAS Provides professional, scientific and reliable content that is easy to understand, and Includes contributions from leading engineers and researchers in the field Sense and Avoid in UAS: Research and Applications is an invaluable source of original and specialised information. It acts as a reference manual for practising engineers and advanced theoretical researchers and also forms a useful resource for younger engineers and postgraduate students. With its credible sources and thorough review process, Sense and Avoid in UAS: Research and Applications provides a reliable source of information in an area that is fast expanding but scarcely covered.
£94.95
John Wiley & Sons Inc Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave
Starting from a basic knowledge of mathematics and mechanics gained in standard foundation classes, Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave takes the reader conceptually through from the fundamental mechanics of lift to the stage of actually being able to make practical calculations and predictions of the coefficient of lift for realistic wing profile and planform geometries. The classical framework and methods of aerodynamics are covered in detail and the reader is shown how they may be used to develop simple yet powerful MATLAB or Octave programs that accurately predict and visualise the dynamics of real wing shapes, using lumped vortex, panel, and vortex lattice methods. This book contains all the mathematical development and formulae required in standard incompressible aerodynamics as well as dozens of small but complete working programs which can be put to use immediately using either the popular MATLAB or free Octave computional modelling packages. Key features: Synthesizes the classical foundations of aerodynamics with hands-on computation, emphasizing interactivity and visualization. Includes complete source code for all programs, all listings having been tested for compatibility with both MATLAB and Octave. Companion website (www.wiley.com/go/mcbain) hosting codes and solutions. Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave is an introductory text for graduate and senior undergraduate students on aeronautical and aerospace engineering courses and also forms a valuable reference for engineers and designers.
£84.95
John Wiley & Sons Inc Introduction to Flight Testing
Introduction to Flight Testing Introduction to Flight Testing Provides an introduction to the basic flight testing methods employed on general aviation aircraft and unmanned aerial vehicles Introduction to Flight Testing provides a concise introduction to the basic flight testing methods employed on general aviation aircraft and unmanned aerial vehicles for courses in aeronautical engineering. There is particular emphasis on the use of modern on-board instruments and inexpensive, off-the-shelf portable devices that make flight testing accessible to nearly any student. This text presents a clear articulation of standard methods for measuring aircraft performance characteristics. Topics covered include aircraft and instruments, digital data acquisition techniques, flight test planning, the standard atmosphere, uncertainty analysis, level flight performance, airspeed calibration, stall, climb and glide, take-off and landing, level turn, static and dynamic longitudinal stability, lateral-directional stability, and flight testing of unmanned aircraft systems. Unique to this book is a detailed discussion of digital data acquisition (DAQ) techniques, which are an integral part of modern flight test programs. This treatment includes discussion of the analog-to-digital conversion, sample rate, aliasing, and filtering. These critical details provide the flight test engineer with the insight needed to understand the capabilities and limitations of digital DAQ. Key features: Provides an introduction to the basic flight testing methods and instrumentation employed on general aviation aircraft and unmanned aerial vehicles. Includes examples of flight testing on general aviation aircraft such as Cirrus, Diamond, and Cessna aircraft, along with unmanned aircraft vehicles. Suitable for courses on Aircraft Flight Test Engineering. Introduction to Flight Testing provides resources and guidance for practitioners in the rapidly-developing field of drone performance flight test and the general aviation flight test community.
£83.95
John Wiley & Sons Inc Flight Dynamics and Control of Aero and Space Vehicles
Flight Vehicle Dynamics and Control Rama K. Yedavalli, The Ohio State University, USA A comprehensive textbook which presents flight vehicle dynamics and control in a unified framework Flight Vehicle Dynamics and Control presents the dynamics and control of various flight vehicles, including aircraft, spacecraft, helicopter, missiles, etc, in a unified framework. It covers the fundamental topics in the dynamics and control of these flight vehicles, highlighting shared points as well as differences in dynamics and control issues, making use of the ‘systems level’ viewpoint. The book begins with the derivation of the equations of motion for a general rigid body and then delineates the differences between the dynamics of various flight vehicles in a fundamental way. It then focuses on the dynamic equations with application to these various flight vehicles, concentrating more on aircraft and spacecraft cases. Then the control systems analysis and design is carried out both from transfer function, classical control, as well as modern, state space control points of view. Illustrative examples of application to atmospheric and space vehicles are presented, emphasizing the ‘systems level’ viewpoint of control design. Key features: Provides a comprehensive treatment of dynamics and control of various flight vehicles in a single volume. Contains worked out examples (including MATLAB examples) and end of chapter homework problems. Suitable as a single textbook for a sequence of undergraduate courses on flight vehicle dynamics and control. Accompanied by a website that includes additional problems and a solutions manual. The book is essential reading for undergraduate students in mechanical and aerospace engineering, engineers working on flight vehicle control, and researchers from other engineering backgrounds working on related topics.
£79.95
John Wiley & Sons Inc Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations
Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations presents a detailed and comprehensive treatment of performance analysis techniques for jet transport airplanes. Uniquely, the book describes key operational and regulatory procedures and constraints that directly impact the performance of commercial airliners. Topics include: rigid body dynamics; aerodynamic fundamentals; atmospheric models (including standard and non-standard atmospheres); height scales and altimetry; distance and speed measurement; lift and drag and associated mathematical models; jet engine performance (including thrust and specific fuel consumption models); takeoff and landing performance (with airfield and operational constraints); takeoff climb and obstacle clearance; level, climbing and descending flight (including accelerated climb/descent); cruise and range (including solutions by numerical integration); payload–range; endurance and holding; maneuvering flight (including turning and pitching maneuvers); total energy concepts; trip fuel planning and estimation (including regulatory fuel reserves); en route operations and limitations (e.g. climb-speed schedules, cruise ceiling, ETOPS); cost considerations (e.g. cost index, energy cost, fuel tankering); weight, balance and trim; flight envelopes and limitations (including stall and buffet onset speeds, V–n diagrams); environmental considerations (viz. noise and emissions); aircraft systems and airplane performance (e.g. cabin pressurization, de-/anti icing, and fuel); and performance-related regulatory requirements of the FAA (Federal Aviation Administration) and EASA (European Aviation Safety Agency). Key features: Describes methods for the analysis of the performance of jet transport airplanes during all phases of flight Presents both analytical (closed form) methods and numerical approaches Describes key FAA and EASA regulations that impact airplane performance Presents equations and examples in both SI (Système International) and USC (United States Customary) units Considers the influence of operational procedures and their impact on airplane performance Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations provides a comprehensive treatment of the performance of modern jet transport airplanes in an operational context. It is a must-have reference for aerospace engineering students, applied researchers conducting performance-related studies, and flight operations engineers.
£86.95
John Wiley & Sons Inc UAS Integration into Civil Airspace: Policy, Regulations and Strategy
UAS Integration into Civil Airspace Explores current Unmanned Air Systems policies with a view to developing a common airspace access and integration strategy UAS Integration into Civil Airspace: Policy, Regulations and Strategy examines the current state of Unmanned Aerial Systems (UAS) airspace access and integration around the world, focusing on the efforts that have produced a regulatory response to the demand for access. This analysis discusses the proposed architectures for a common strategic and analytical thread that may serve as templates for the entire community, as well as for regulators and policymakers who must balance the needs and demands of UAS users with the general public’s right to safe skies and privacy. An understanding of the market forces and business cases that are fuelling the development of the technology is also covered with a focus on the economics of the industry. The book presents a strategy for airspace access and integration that will facilitate humanitarian, environmental, social and security uses of unmanned aircraft systems on a global scale. Key features: Discusses existing and evolving policies and regulations from nations around the world for operating Unmanned Aerial Systems (UAS) in civil airspace Examines the current status of technological developments such as UTM and U-space and explores the technological potential in the years to come Presents a comprehensive airspace integration strategy that balances the many conflicting interests in the UAS world, with due regard for safety, utility and affordability UAS Integration into Civil Airspace: Policy, Regulations and Strategy is essential reading for all professionals involved in UAS industry, as well as students in mechanical engineering and law.
£68.95