Search results for ""Author NanoScience"
Taylor & Francis Inc Molecular Manipulation with Atomic Force Microscopy
With the invention of scanning probe techniques in the early 1980s, scientists can now play with single atoms, single molecules, and even single bonds. Force, dynamics, and function can now be probed at the single-molecule level. Molecular Manipulation with Atomic Force Microscopy (AFM) presents a series of topics that discuss concepts and methodologies used to manipulate and study single (bio)molecules with AFM. The first part is dedicated to the pulling of single molecules with force spectroscopy to investigate molecular interactions, mechanics, and mechanochemical processes, and the second part to the manipulation, repositioning, and targeted delivery of single molecules on substrates.Single molecule manipulation is an exciting area of research which made important breakthroughs in nanoscience and which could find potential applications in a diverse range of disciplines, including chemistry, biology, physics, material and polymer science, and engineering. New and experienced AFM researchers looking for applications beyond imaging will find a wealth of information in this informative volume.
£150.00
Pan Stanford Publishing Pte Ltd Ultrafast Dynamics at the Nanoscale: Biomolecules and Supramolecular Assemblies
Ultrafast Dynamics at the Nanoscale provides a combined experimental and theoretical insight into the molecular-level investigation of light-induced quantum processes in biological systems and nanostructured (bio)assemblies. Topics include DNA photostability and repair, photoactive proteins, biological and artificial light-harvesting systems, plasmonic nanostructures, and organic photovoltaic materials, whose common denominator is the key importance of ultrafast quantum effects at the border between the molecular scale and the nanoscale. The functionality and control of these systems have been under intense investigation in recent years in view of developing a detailed understanding of ultrafast nanoscale energy and charge transfer, as well as fostering novel technologies based on sustainable energy resources.Both experiment and theory have made big strides toward meeting the challenge of these truly complex systems. This book, thus, introduces the reader to cutting-edge developments in ultrafast nonlinear optical spectroscopies and the quantum dynamical simulation of the observed dynamics, including direct simulations of two-dimensional optical experiments. Taken together, these techniques attempt to elucidate whether the quantum coherent nature of ultrafast events enhances the efficiency of the relevant processes and where the quantum–classical boundary sets in, in these high-dimensional biological and material systems. The chapters contain well-illustrated accounts of the authors’ research work, including didactic introductory material, and address a multidisciplinary audience from chemistry, physics, biology, and materials sciences. The book is, therefore, a must-have for graduate- and postgraduate-level researchers who wish to learn about molecular nanoscience from a combined spectroscopic and theoretical viewpoint.
£120.00
Royal Society of Chemistry Soft Matter for Biomedical Applications
Dynamic soft materials that have the ability to expand and contract, change stiffness, self-heal or dissolve in response to environmental changes, are of great interest in applications ranging from biosensing and drug delivery to soft robotics and tissue engineering. This book covers the state-of-the-art and current trends in the very active and exciting field of bioinspired soft matter, its fundamentals and comprehension from the structural-property point of view, as well as materials and cutting-edge technologies that enable their design, fabrication, advanced characterization and underpin their biomedical applications. The book contents are supported by illustrated examples, schemes, and figures, offering a comprehensive and thorough overview of key aspects of soft matter. The book will provide a trusted resource for undergraduate and graduate students and will extensively benefit researchers and professionals working across the fields of chemistry, biochemistry, polymer chemistry, materials science and engineering, nanosciences, nanotechnologies, nanomedicine, biomedical engineering and medical sciences.
£199.00
Springer Nature Switzerland AG Scanning Probe Microscopy: The Lab on a Tip
Written by three leading experts in the field, this textbook describes and explains all aspects of the scanning probe microscopy. Emphasis is placed on the experimental design and procedures required to optimize the performance of the various methods. Scanning Probe Microscopy covers not only the physical principles behind scanning probe microscopy but also questions of instrumental designs, basic features of the different imaging modes, and recurring artifacts. The intention is to provide a general textbook for all types of classes that address scanning probe microscopy. Third year undergraduates and beyond should be able to use it for self-study or as textbook to accompany a course on probe microscopy. Furthermore, it will be valuable as reference book in any scanning probe microscopy laboratory. Novel applications and the latest important results are also presented, and the book closes with a look at the future prospects of scanning probe microscopy, also discussing related techniques in nanoscience. Ideally suited as an introduction for graduate students, the book will also serve as a valuable reference for practising researchers developing and using scanning probe techniques.
£64.99
Royal Society of Chemistry Water Droplets to Nanotechnology: A Journey Through Self-Assembly
The ability of nanostructures to organize into complex arrangements leads to unique materials with valuable applications. Self-assembly is therefore a key concept for nanotechnology, but it can be quite a complex and difficult subject to approach. Water Droplets to Nanotechnology gives a simple and general overview of the different self-assembly processes which are at the basis of recent developments in nanotechnology. The book shows how simple phenomenon from everyday examples can become sophisticated tools for self-assembly and the fabrication of nanomaterials. By exploring the coffee stain and tears of wine phenomena, the first part looks at how the evaporation of a droplet of colloidal solution can be used in designing organized structures. This leads onto more complex systems such as templated porous materials, photonic crystals, colloidal nanocrystals and quasi-crystals through to bottom-up systems for designing hierarchal materials. By taking the reader on a journey from everyday life to the secrets of nanotechnology, the book is suitable for a non-specialist audience interested in self-assembly as well as the wider perspectives and latest developments of nanoscience.
£61.40
Pan Stanford Publishing Pte Ltd Microwave Engineering of Nanomaterials: From Mesoscale to Nanoscale
The use of microwaves has gradually democratized itself in several scientific areas and is now a common methodology in domains as different as chemistry, protein digestion, mining, and metallurgy. Materials chemistry is one field where microwave irradiation technologies are being studied. In recent years, development of nanotechnologies has increased the interest of materials scientists in these new technologies. Microwave methodologies are now routinely used in several areas of materials science, and new advances are ongoing. This book presents recent improvements in microwave engineering of materials and nanomaterials, interactions of microwave chemistry with materials, and advances in microwave technologies in several domains such as polymer synthesis and modification, processing of various materials (ceramics, glasses, metallic alloys, zeolites), and synthesis and functionalization of diverse nanomaterials (carbon nanotubes, MOF semiconductors, inorganic nanoparticles). The book will be of interest to all students and researchers in materials science and nanosciences who want to discover or increase their knowledge of microwave technology.
£130.00
Royal Society of Chemistry Supramolecular Chemistry at Surfaces
Supramolecular chemistry provides a versatile approach for modifying the structure and function of surfaces, including the formation of clusters, monolayers and films. This can be used in a variety of applications from porous surface systems, to modifiers of interface energy and sensor-based systems. Supramolecular Chemistry at Surfaces covers different methods of preparing and studying self-assembled structures at surfaces and interfaces. The book starts with a general introduction concerning the nature of surfaces followed by specific sections discussing different techniques to characterise surface-based supramolecular systems. Each chapter then goes on to address different surface systems including the surface of water; physisorbed layers at interfaces; chemisorbed layers at interfaces; polyelectrolyte systems; thin films; dynamic systems; and patterning. Written by a leading expert in the field, this is the first book to give a multidisciplinary view of the supramolecular aspects of interfaces providing the reader with an objective summary of all the deposition methods and their characterisation. The book will appeal to students and researchers in supramolecular chemistry, nanoscience, polymer chemistry and physics, surface science and materials science.
£179.00
ISTE Ltd and John Wiley & Sons Inc Applications and Metrology at Nanometer-Scale 2: Measurement Systems, Quantum Engineering and RBDO Method
Nanoscience, nanotechnologies and the laws of quantum physics are sources of disruptive innovation that open up new fields of application. Quantum engineering enables the development of very sensitive materials, sensor measurement systems and computers. Quantum computing, which is based on two-level systems, makes it possible to manufacture computers with high computational power. This book provides essential knowledge and culminates with an industrial application of quantum engineering and nanotechnologies. It presents optical systems for measuring at the nanoscale, as well as quantum physics models that describe how a two-state system interacts with its environment. The concept of spin and its derivation from the Dirac equation is also explored, while theoretical foundations and example applications aid in understanding how a quantum gate works. Application of the reliability-based design optimization (RBDO) method of mechanical structures is implemented, in order to ensure reliability of estimates from the measurement of mechanical properties of carbon nanotube structures. This book provides valuable support for teachers and researchers but is also intended for engineering students, working engineers and Master�s students.
£137.95
John Wiley & Sons Inc The Lightest Metals: Science and Technology from Lithium to Calcium
The first seven metals in the periodic table are lithium, beryllium, sodium, magnesium, aluminium, potassium and calcium, known collectively as the “lightest metals”. The growing uses of these seven elements are enmeshing them ever more firmly into critical areas of 21st century technology, including energy storage, catalysis, and various applications of nanoscience. This volume provides comprehensive coverage of the fundamentals and recent advances in the science and technology of the lightest metals. Opening chapters of the book describe major physical and chemical properties of the metals, their occurrence and issues of long-term availability. The book goes on to disucss a broad range of chemical features, including low oxidation state chemistry, organometallics, metal-centered NMR spectroscopy, and cation-π interactions. Current and emerging applications of the metals are presented, including lithium-ion battery technology, hydrogen storage chemistry, superconductor materials, transparent ceramics, nano-enhanced catalysis, and research into photosynthesis and photoelectrochemical cells.The content from this book will be added online to the Encyclopedia of Inorganic and Bioinorganic Chemistry: http://www.wileyonlinelibrary.com/ref/eibc
£153.21
John Wiley & Sons Inc Nanostructured Materials and Systems
The Symposium on Nanostructured Materials and Systems was held during the 8th Pacific Rim Conference on Ceramic and Glass Technology (PACRIM 8) from May 31-June 5, 2009 in Vancouver, Canada. This symposium aimed to review the progress in the state-of-the-art of nanoscience and nanotechnology including synthesis, processing, modeling, applications and assessment of toxicological potential of nanomatter. More than 55 contributions (invited talks, oral presentations, and posters), were presented by participants, from all over the world, representing universities, research institutions, and industry which made this symposium an attractive forum for interdisciplinary presentations and discussions and to elaborate their functional diversity. This issue contains 16 peer-reviewed papers (invited and contributed) incorporating the latest developments related to synthesis, processing and manufacturing technologies of nanoscaled materials and systems including one-dimensional nanostructures, nanoparticle-based composites, electrospinning of nanofibers, functional thin films, ceramic membranes, bioactive materials and self-assembled functional nanostructures and nanodevices. These papers discuss several important aspects related to fabrication and engineering issues necessary for understanding and further development of processing and manufacturing of nanostructured materials and systems.
£105.95
Pan Stanford Publishing Pte Ltd Nanomaterials for Direct Alcohol Fuel Cell
Direct alcohol fuel cells (DAFCs), such as methanol and ethanol ones, are very promising advanced power systems that may considerably reduce dependence on fossil fuels and are, therefore, attracting increased attention worldwide. Nanostructured materials can improve the performance of the cathodes, anodes, and electrolytes of DAFCs. This book focuses on the most recent advances in the science and technology of nanostructured materials for direct alcohol fuel cells, including novel non-noble or low noble metal catalysts deposited on the graphene layer and metal-free doped carbon black for oxygen electroreduction reaction, Sn-based bimetallic and trimetallic nanoparticles for alcohol electro-oxidation reaction, and novel nanomaterials for promoting proton transfer in electrolytes. In addition, the book includes chapters from not only experimentalists but also computational chemists who have worked in the development of advanced power systems for decades.Illustrated throughout with excellent figures, this multidisciplinary work is not just a reference for researchers in chemistry and materials science, but a handy textbook for advanced undergraduate- and graduate-level students in nanoscience- and nanotechnology-related courses, especially those with an interest in developing novel materials for advanced power systems.
£98.99
Royal Society of Chemistry Nano-Society: Pushing the Boundaries of Technology
Major technology shifts do not happen overnight and rarely are they the result of a single breakthrough discovery. Nowhere is this more true than for the broad set of enabling technologies that we have come to simply call "nanotechnology". Rather than standing on the shoulders of a few intellectual giants, nanotechnologies are created by tens of thousands of researchers and scientists working on minute and sometimes arcane aspects of their fields of expertise in areas as diverse as medicine, telecommunications, solar cells, filtration, coatings, or ever smaller transistors for electronic devices. They come from different sciences, live in different parts of the world and work for different organizations (government laboratories, industry laboratories, universities, private research facilities) and follow their own set of rules - get papers reviewed and published; achieve scientific recognition from their peers; struggle to get funding for new ideas; look to make that breakthrough discovery that leads to the ultimate resumÚ item - a nobel prize; get pushed by their funders to secure patent rights and commercialize new discoveries. This book puts a spotlight on some of the scientists who are pushing the boundaries of technology and it gives examples of their work and how they are advancing knowledge one little step at a time. The book shatters the monolithic term "nanotechnology" into the myriad of facets that it really is. It is a journey through the world of nanotechnology research and development, taking a personal look at how nanotechnologies get created today and by whom. The book covers 122 specific research projects that are happening in laboratories around the world and provides commentaries from the scientists in their own words. However, the collection of stories in this book barely scratches the surface of the vast and growing body of research that leads us into the nanotechnology age. The selection presented in the book is not meant to rank some laboratories and scientists higher than others, nor to imply that the work introduced in the book is more important or valuable than all the work that is not covered. The intention is to give the interested reader an idea of the incredibly diverse aspects that make up nanotechnology research and development - the results of which will bring about a new era of industrial and medical technologies. Nanoscience and nanotechnology research is a truly multidisciplinary and international effort. Each of the chapters is based on a particular scientific paper that has been published in a peer-reviewed journal and, while each story revolves around one or two scientists who were interviewed for this book, many, if not most, of the scientific accomplishments covered in the book are the result of collaborative efforts by several scientists and research groups, often from different organizations and from different countries. The book is different to other books in this field because it provides a novel human touch to nanotechnology research by not only covering a wide range of research topics but also the (often nameless) scientists behind this research. The book is a collection of Spotlight articles from the popular Nanowerk website and each article has been crafted with the author(s) of a scientific paper and signed off by them prior to being posted on Nanowerk. The book is intended for two broad groups of audiences - scientists and nanoscience students who want a bite-size, quick read to get a good first impression of what nanotechnologies are about and how they affect not only their own field but also neighbouring fields and other scientific disciplines further away. And a non-scientific readership that needs to (because it affects their organization and they have to acquaint themselves with nanotechnology) or wants to get a 'non-threatening' (i.e. no formulas, complex diagrams, or unexplained scientific terms) introduction, written by a non-scientist for non-scientists.
£132.99
John Wiley and Sons Ltd Physical Chemistry
Ever since Physical Chemistry was first published in 1913 (then titled Outlines of Theoretical Chemistry, by Frederick Getman), it has remained a highly effective and relevant learning tool thanks to the efforts of physical chemists from all over the world. Each new edition has benefited from their suggestions and expert advice. The result of this remarkable tradition is now in your hands. Now revised and updated, this Fourth Edition of Physical Chemistry by Silbey, Alberty, and Bawendi continues to present exceptionally clear explanations of concepts and methods. The basic theory of chemistry is presented from the viewpoint of academic physical chemists, but detailed discussions of practical applications are integrated throughout. The problems in the book also skillfully blend theory and applications. Highlights of the Fourth Edition:* A total of 170 computer problems appropriate for MATHEMATICATM, MATHCADTM, MATLABTM, or MAPLETM.* Increased emphasis on the thermodynamics and kinetics of biochemical reactions, including the denaturation of proteins and nucleic acids.* Expanded coverage of the uses of statistical mechanics, nuclear magnetic relaxation, nanoscience, and oscillating chemical reactions.* Many new tables and figures throughout the text.
£174.68
John Wiley & Sons Inc Problem Solving in Quantum Mechanics: From Basics to Real-World Applications for Materials Scientists, Applied Physicists, and Devices Engineers
This topical and timely textbook is a collection of problems for students, researchers, and practitioners interested in state-of-the-art material and device applications in quantum mechanics. Most problem are relevant either to a new device or a device concept or to current research topics which could spawn new technology. It deals with the practical aspects of the field, presenting a broad range of essential topics currently at the leading edge of technological innovation. Includes discussion on: Properties of Schroedinger Equation Operators Bound States in Nanostructures Current and Energy Flux Densities in Nanostructures Density of States Transfer and Scattering Matrix Formalisms for Modelling Diffusive Quantum Transport Perturbation Theory, Variational Approach and their Applications to Device Problems Electrons in a Magnetic or Electromagnetic Field and Associated Phenomena Time-dependent Perturbation Theory and its Applications Optical Properties of Nanostructures Problems in Quantum Mechanics: For Material Scientists, Applied Physicists and Device Engineers is an ideal companion to engineering, condensed matter physics or materials science curricula. It appeals to future and present engineers, physicists, and materials scientists, as well as professionals in these fields needing more in-depth understanding of nanotechnology and nanoscience.
£71.95
ISTE Ltd and John Wiley & Sons Inc Measurements using Optic and RF Waves
The scientific and technical basis underpinning modern measurement techniques used for electromagnetic quantities and phenonema is necessarily wide-ranging, as the electromagnetic environment spans all possible frequencies and wavelengths. Measurements must be applicable in fields as varied as nanotechnologies, telecommunications, meteorology, geo-location, radio-astronomy, health, biology, and many others. In order to adequately cover the many different facets of the topic, this book provides examples from the entire range of the electromagnetic spectrum — covering frequencies from several hertz to terahertz, and considering wavelength distances ranging from nanometers to light-years in optics. It then provides coverage of the various measurement techniques using electromagnetic waves for various applications, devoting chapters to each different field of application. This comprehensive book gives detailed information on: the various techniques and methods available to measure the key characteristics of electromagnetic waves, in terms of the local field and phase for a broad field of frequencies; determination of physical quantities such as distance, time, etc., using electromagnetic properties; new approaches to measurements in the field of electromagnetic distribution in complex structures media, such as biological tissues and in the nanosciences.
£152.95
Springer Nature Switzerland AG Transdisciplinarity
This contributed volume book aims at discussing transdisciplinary approaches to address common problems. By working transdisciplinarily, researchers coming from different disciplines can work jointly using a shared conceptual framework bringing together disciplinary-specific theories and concepts. There are numerous barriers that can obstruct effective communication between different cultures, communities, religions and geographies. This book shows that through bringing together different disciplines, researchers not only can surpass these barriers but can effectively produce new venues of thought that can positively affect the development and evolution of research and education. The book discusses new and emerging applications of knowledge produced by transdisciplinary efforts and covers the interplay of many disciplines, including agriculture, economics, mathematics, engineering, industry, information technology, marketing, nanoscience, neuroscience, space exploration, human-animal relationships, among others. Consequently, it also covers the relationship between art and science, as one of the most remarkable transdisciplinary approaches that paves the way for new methods in engineering, design, architecture and many other fields.
£159.99
Royal Society of Chemistry Carbon Nitride Nanostructures for Sustainable Energy Production and Environmental Remediation
Beneficial properties of graphitic carbon nitride (gCN) have been discovered in recent years during the promotion of its visible‐light‐driven photocatalytic activity for water splitting. Applications of gCN have flourished in such fields as renewable energy production and environmental remediation, while gCNs have been explored to serve as electrocatalysts, electronic and photoelectronic devices, non-volatile memory devices, anodes in lithium‐ion batteries, and platinum supports in polymer electrolyte fuel cells. This book covers recent advances in the rational design and characterization of gCN nanostructures for energy and environmental remediation, and discusses achievements in fabrication approaches of gCN nanostructures using various chemical and physical approaches. It highlights recent advances in the theoretical and experimental development of novel multidimensional nanoarchitectonics of gCNs along with insight into catalytic energy production, energy storage, and environmental remediation. Practical applications and utilization of gCN based devices are also discussed. With contributions from leading global researchers, this title will appeal to graduate students and researchers in nanoscience, chemistry, chemical engineering and materials science who are interested in developing new gCN materials or devices.
£169.00
Nova Science Publishers Inc Advances in Nano Instrumentation Systems and Computational Techniques
Nanotechnology is the novel technology that enables the control of matter at dimensions of roughly 1 to 100 nanometers, where exclusive phenomena allow novel systems and applications to arise. In other words, nanotechnology is the art and science of manipulating atoms, molecules and matter at nanometric length scales, to create new systems, materials, and devices. The field of nanotechnology delivers opportunities and challenges for scientists and technologists for the development of new materials and systems with greater functionality and speed. The rapidly emerging innovations in nano systems have enabled the creation of new sensors, transducers and measurement devices with great improvements in sensitivity, specificity and accuracy, along with significant size reductions. Nanotechnology and nano engineering stand to produce significant scientific and technological advances in diverse fields including medicine and physiology, automation, space research, and sensor technology. Also, recent advances in computational nanoscience enables scientists and technologists to study nano materials and nano systems more efficiently with the help of mathematical models and simulation techniques. This edited book aims to provide useful scientific discussions on the recent advances in nano systems and computational techniques covering topics in the diverse fields of biomedical engineering, automobile engineering, mechatronics, materials technology and renewable energy.
£76.49
Wiley-VCH Verlag GmbH Introductory Quantum Mechanics with MATLAB: For Atoms, Molecules, Clusters, and Nanocrystals
Presents a unique approach to grasping the concepts of quantum theory with a focus on atoms, clusters, and crystals Quantum theory of atoms and molecules is vitally important in molecular physics, materials science, nanoscience, solid state physics and many related fields. Introductory Quantum Mechanics with MATLAB is designed to be an accessible guide to quantum theory and its applications. The textbook uses the popular MATLAB programming language for the analytical and numerical solution of quantum mechanical problems, with a particular focus on clusters and assemblies of atoms. The textbook is written by a noted researcher and expert on the topic who introduces density functional theory, variational calculus and other practice-proven methods for the solution of quantum-mechanical problems. This important guide: -Presents the material in a didactical manner to help students grasp the concepts and applications of quantum theory -Covers a wealth of cutting-edge topics such as clusters, nanocrystals, transitions and organic molecules -Offers MATLAB codes to solve real-life quantum mechanical problems Written for master's and PhD students in physics, chemistry, material science, and engineering sciences, Introductory Quantum Mechanics with MATLAB contains an accessible approach to understanding the concepts of quantum theory applied to atoms, clusters, and crystals.
£69.00
John Wiley & Sons Inc Food Chemistry: The Role of Additives, Preservatives and Adulteration
FOOD CHEMISTRY A unique book detailing the impact of food adulteration, food toxicity and packaging on our nutritional balance, as well as presenting and analyzing technological advancements such as the uses of green solvents with sensors for non-destructive quality evaluation of food. Food Chemistry: The Role of Additives, Preservatives and Adulteration is designed to present basic information on the composition of foods and the chemical and physical changes that their characteristics undergo during processing, storage, and handling. Details concerning recent developments and insights into the future of food chemical risk analysis are presented, along with topics such as food chemistry, the role of additives, preservatives, and food adulteration, food safety objectives, risk assessment, quality assurance, and control. Moreover, good manufacturing practices, food processing systems, design and control, and rapid methods of analysis and detection are covered, as well as sensor technology, environmental control, and safety. The book also presents detailed information about the chemistry of each major class of food additive and their multiple functionalities. In addition, numerous recent findings are covered, along with an explanation of how their quality is ascertained and consumer safety ensured. Audience The core audience of this book include food technologists, food chemists, biochemists, biotechnologists, food, and beverage technologists, and nanoscientists working in the field of food chemistry, food technology, and food and nanoscience. In addition, R&D experts, researchers in academia and industry working in food science/safety, and process engineers in industries will find this book extremely valuable.
£187.95
John Wiley & Sons Inc Superatoms: Principles, Synthesis and Applications
Explore the theory and applications of superatomic clusters and cluster assembled materials Superatoms: Principles, Synthesis and Applications delivers an insightful and exciting exploration of an emerging subfield in cluster science, superatomic clusters and cluster assembled materials. The book presents discussions of the fundamentals of superatom chemistry and their application in catalysis, energy, materials science, and biomedical sciences. Readers will discover the foundational significance of superatoms in science and technology and learn how they can serve as the building blocks of tailored materials, promising to usher in a new era in materials science. The book covers topics as varied as the thermal and thermoelectric properties of cluster-based materials and clusters for CO2 activation and conversion, before concluding with an incisive discussion of trends and directions likely to dominate the subject of superatoms in the coming years. Readers will also benefit from the inclusion of: A thorough introduction to the rational design of superatoms using electron-counting rules Explorations of superhalogens, endohedrally doped superatoms and assemblies, and magnetic superatoms A practical discussion of atomically precise synthesis of chemically modified superatoms A concise treatment of superatoms as the building blocks of 2D materials, as well as superatom-based ferroelectrics and cluster-based materials for energy harvesting and storage Perfect for academic researchers and industrial scientists working in cluster science, energy materials, thermoelectrics, 2D materials, and CO2 conversion, Superatoms: Principles, Synthesis and Applications will also earn a place in the libraries of interested professionals in chemistry, physics, materials science, and nanoscience.
£148.95
Taylor & Francis Inc Molecular and Colloidal Electro-optics
Molecular and Colloidal Electro-Optics presents cohesive coverage from internationally recognized experts on new approaches and developments in both theoretical and experimental areas of electro-optic science. It comprises a well-integrated yet multi-disciplinary treatment of fundamental principles, strategies, and applications of electro-optic techniques for the characterization of macromolecular, small-particle, and nanomolecular systems.Following a historical review of post-war advances in electro-optics of disperse systems, the first part of the book focuses on the latest achievements in electro-optic theory, particularly low-frequency relaxation. It offers comparative discussions and experimental data to accompany different viewpoints on the origin of the low-frequency effects and multiple theoretical constructions. The second part highlights the unique advantage of using electro-optics as an alternative to conventional characterization and analysis of colloidal systems. Demonstrating the sensitivity of electro-optic methods to interparticle interactions, the book explains how these methods are used to analyze particle surface electric states, evaluate phase transitions, and determine physical properties. As the first treatment of this subject to surface in more than fifteen years, Molecular and Colloidal Electro-Optics is a definitive, up-to-date portrait of modern colloidal electro-optic science. This one-stop reference to the latest theory, methods, and applications is ideal for advanced graduate students and researchers in biophysical chemistry, microbiology, polymer, colloid, and nanoscience.
£240.00
Princeton University Press Molecular Machines: A Materials Science Approach
Molecular Machines presents a dynamic new approach to the physics of enzymes and DNA from the perspective of materials science. Unified around the concept of molecular deformability—how proteins and DNA stretch, fold, and change shape—this book describes the complex molecules of life from the innovative perspective of materials properties and dynamics, in contrast to structural or purely chemical approaches. It covers a wealth of topics, including nonlinear deformability of enzymes and DNA; the chemo-dynamic cycle of enzymes; supra-molecular constructions with internal stress; nano-rheology and viscoelasticity; and chemical kinetics, Brownian motion, and barrier crossing. Essential reading for researchers in materials science, engineering, and nanotechnology, the book also describes the landmark experiments that have established the materials properties and energy landscape of large biological molecules.Molecular Machines is also ideal for the classroom. It gives graduate students a working knowledge of model building in statistical mechanics, making it an essential resource for tomorrow's experimentalists in this cutting-edge field. In addition, mathematical methods are introduced in the bio-molecular context—for example, DNA conformational transitions are used to illustrate the transfer matrix formalism. The result is a generalized approach to mathematical problem solving that enables students to apply their findings more broadly.Molecular Machines represents the next leap forward in nanoscience, as researchers strive to harness proteins, enzymes, and DNA as veritable machines in medicine, technology, and beyond.
£52.20
Royal Society of Chemistry New Advances in Carbon Nanomaterials: Faraday Discussion 173
Carbon nanomaterials have a unique place in nanoscience owing to their exceptional electrical, thermal, chemical and mechanical properties and have found application in areas diverse as composite materials, energy storage and conversion, sensors, drug delivery, field emission devices and nanoscale electronic components. Conjugated carbon nanomaterials cover the areas of carbon nanotubes, fullerenes and graphene. Carbon nanotubes continue to gain attention and have impacted many fields and the number of potential applications continues to grow. The chemistry of carbon nanotubes, control over electronic properties and the assembly of nanotube devices are particularly active areas. Work in fullerenes has renewed vigour with significant advances in the field of superconductivity, thin films and supramolecular assembly being made over the last few years. Graphene is perhaps the newest of the carbon nanomaterials and promises to be a very active field. Already since its 'isolation' in 2004 it has grabbed the attention of the chemistry, materials and physics communities. It promises to rival carbon nanotubes in terms of properties and potential applications with the number of publications rising from ca. 130 in 2005 to ca. 2,800 in 2010. The discussion covers three key areas: carbon nanotubes, fullerenes and graphene which although look very different have much, often unrealised, common ground. Much of the work on carbon nanotubes has origins in fullerene research and now graphene is building on carbon nanotube work.
£170.00
John Wiley & Sons Inc The Mathematical Biology of Diatoms
THE MATHEMATICAL BIOLOGY OF DIATOMS This book contains unique, advanced applications using mathematics, algorithmic techniques, geometric analysis, and other computational methods in diatom research. Historically, diatom research has centered on taxonomy and systematics. While these topics are of the utmost importance, other aspects of this important group of unicells have been increasingly explored in the biological sciences. While mathematical applications are still rare, they are starting take hold and provide an extensive avenue of new diatom research, including applications in multidisciplinary fields. The work contained in this volume is an eclectic mix of analytical studies on diatoms. Mathematical treatment of the various biological disciplines covered in this book range from implicit, but succinct studies to more elaborate detailed computational studies. Topics include growth models, nanostructure, nanoengineering, cell growth, araphid diatoms, valve ontogeny, diatom metabolism, diatom motility, synchronization, diatom kinematics, photonics, biogenic sensors, photochemistry, diatom light response, colony growth, siliceous unicells, algal kinetics, diatom structure, diatom imaging, functional morphology, geometric structure, biomineralization, high-resolution imaging, non-destructive imaging, and 3D structure. This wide-ranging volume provides an introductory as well as an advanced treatment of recent interests in diatom research. The mathematical research in this volume may be applicable to studies of other unicells, biomechanics, biological processes, physio-chemical analyses, or nanoscience.
£208.00
Pan Stanford Publishing Pte Ltd Nanophotonics: Manipulating Light with Plasmons
The manipulation of light at the nanometer scale is highly pursued for both fundamental sciences and wide applications. The diffraction limit of light sets the limit for the smallest size of photonic devices to the scale of light wavelength. Fortunately, the peculiar properties of surface plasmons in metal nanostructures make it possible to squeeze light into nanoscale volumes and enable the manipulation of light and light–matter interactions beyond the diffraction limit. Studies on surface plasmons have led to the creation of a booming research field called plasmonics. Because of its various scientific and practical applications, plasmonics attracts researchers from different fields, making it a truly interdisciplinary subject.Nanophotonics: Manipulating Light with Plasmons starts with the general physics of surface plasmons and a brief introduction to the most prominent research topics, followed by a discussion of computational techniques for light scattering by small particles. Then, a few special topics are highlighted, including surfaceenhanced Raman scattering, optical nanoantennas, optical forces, plasmonic waveguides and circuits, and gain-assisted plasmon resonances and propagation. The book discusses the fundamental and representative properties of both localized surface plasmons and propagating surface plasmons. It explains various phenomena and mechanisms using elegant model systems with well-defined structures, is illustrated throughout with excellent figures, and contains an extensive list of references at the end of each chapter. It will help graduate-level students and researchers in nanophotonics, physics, chemistry, materials science, nanoscience and nanotechnology, and electrical and electronic engineering get a quick introduction to this field.
£116.00
John Wiley & Sons Inc Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics, and Sensing Applications
Systematically summarizes the current status and recent advances in bimetallic structures, their shape-controlled synthesis, properties, and applications Intensive researches are currently being carried out on bimetallic nanostructures, focusing on a number of fundamental, physical, and chemical questions regarding their synthesis and properties. This book presents a systematic and comprehensive summary of the current status and recent advances in this field, supporting readers in the synthesis of model bimetallic nanoparticles, and the exploration and interpretation of their properties. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics and Sensing Applications is divided into three parts. Part 1 introduces basic chemical and physical knowledge of bimetallic structures, including fundamentals, computational models, and in situ characterization techniques. Part 2 summarizes recent developments in synthetic methods, characterization, and properties of bimetallic structures from the perspective of morphology effect, including zero-dimensional nanomaterials, one-dimensional nanomaterials, and two-dimensional nanomaterials. Part 3 discusses applications in electrocatalysis, heterogeneous catalysis, plasmonics and sensing. Comprehensive reference for an important multidisciplinary research field Thoroughly summarizes the present state and latest developments in bimetallic structures Helps researchers find optimal synthetic methods and explore new phenomena in surface science and synthetic chemistry of bimetallic nanostructures Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics and Sensing Applications is an excellent source or reference for researchers and advanced students. Academic researchers in nanoscience, nanocatalysis, and surface plasmonics, and those working in industry in areas involving nanotechnology, catalysis and optoelectronics, will find this book of interest.
£164.95
Wiley-VCH Verlag GmbH Functional Nanomaterials: Synthesis, Properties, and Applications
Functional Nanomaterials Presents the most recent advances in the production and applications of various functional nanomaterials As new synthetic methods, characterization technologies, and nanomaterials (NMs) with novel physical and chemical properties are developed, researchers and scientists across disciplines need to keep pace with advancements in the dynamic field. Functional Nanomaterials: Synthesis, Properties, and Applications provides comprehensive coverage of fundamental concepts, synthetic methods, characterization technologies, device fabrication, performance evaluation, and both current and emerging applications. Contributions from leading scientists in academia and industry present research developments of novel functional nanomaterials including metal nanoparticles, two-dimensional nanomaterials, perovskite-based nanomaterials, and polymer-based nanomaterials and nanocomposites. Topics include metal-based nanomaterials for electrochemical water splitting, cerium-based nanostructure materials for electrocatalysis, applications of rare earth luminescent nanomaterials, metal complex nanosheets, and methods for synthesizing polymer nanocomposites. Provides readers with timely and accurate information on the development of functional nanomaterials in nanoscience and nanotechnology Presents a critical perspective of the design strategy, synthesis, and characterization of advanced functional nanomaterials Focuses on recent research developments in emerging areas with emphasis on fundamental concepts and applications Explores functional nanomaterials for applications in areas such as electrocatalysis, bioengineering, optoelectronics, and electrochemistry Covers a diverse range of nanomaterials, including carbonaceous nanomaterials, metal-based nanomaterials, transition metal dichalcogenides-based nanomaterials, semiconducting molecules, and magnetic nanoparticles Functional Nanomaterials is an invaluable resource for chemists, materials scientists, electronics engineers, bioengineers, and others in the scientific community working with nanomaterials in the fields of energy, electronics, and biomedicine.
£160.00
Duke University Press Nanovision: Engineering the Future
The dawning era of nanotechnology promises to transform life as we know it. Visionary scientists are engineering materials and devices at the molecular scale that will forever alter the way we think about our technologies, our societies, our bodies, and even reality itself. Colin Milburn argues that the rise of nanotechnology involves a way of seeing that he calls “nanovision.” Trekking across the technoscapes and the dreamscapes of nanotechnology, he elaborates a theory of nanovision, demonstrating that nanotechnology has depended throughout its history on a symbiotic relationship with science fiction. Nanotechnology’s scientific theories, laboratory instruments, and research programs are inextricable from speculative visions, hyperbolic rhetoric, and fictional narratives. Milburn illuminates the practices of nanotechnology by examining an enormous range of cultural artifacts, including scientific research articles, engineering textbooks, laboratory images, popular science writings, novels, comic books, and blockbuster films. In so doing, he reveals connections between the technologies of visualization that have helped inaugurate nano research, such as the scanning tunneling microscope, and the prescient writings of Robert A. Heinlein, James Blish, and Theodore Sturgeon. He delves into fictive and scientific representations of “gray goo,” the nightmare scenario in which autonomous nanobots rise up in rebellion and wreak havoc on the world. He shows that nanoscience and “splatterpunk” novels share a violent aesthetic of disintegration: the biological body is breached and torn asunder only to be refabricated as an assemblage of self-organizing machines. Whether in high-tech laboratories or science fiction stories, nanovision deconstructs the human subject and galvanizes the invention of a posthuman future.
£23.99
John Wiley & Sons Inc Organic Nanomaterials: Synthesis, Characterization, and Device Applications
Discover a new generation of organic nanomaterials and their applications Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications. Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts: Part One introduces the fundamentals of nanomaterials and self-assembled nanostructures Part Two examines carbon nanostructuresfrom fullerenes to carbon nanotubes to graphenereporting on properties, theoretical studies, and applications Part Three investigates key aspects of some inorganic materials, self-assembled monolayers, organic field effect transistors, and molecular self-assembly at solid surfaces Part Four explores topics that involve both biological aspects and nanomaterials such as biofunctionalized surfaces Part Five offers detailed examples of how organic nanomaterials enhance sensors and molecular photovoltaics Most of the chapters end with a summary highlighting the key points. References at the end of each chapter guide readers to the growing body of original research reports and reviews in the field. Reflecting the interdisciplinary nature of organic nanomaterials, this book is recommended for researchers in chemistry, physics, materials science, polymer science, and chemical and materials engineering. All readers will learn the principles of synthesizing and characterizing new organic nanomaterials in order to support a broad range of exciting new applications.
£162.95
Taylor & Francis Inc Nanotoxicology: Progress toward Nanomedicine, Second Edition
Since the first publication of this book in 2007, the field of nanoscience and nanomedicine continues to grow substantially. This second edition, Nanotoxicology: Progress toward Nanomedicine, enlists internationally recognized experts to document the continuing development and rationale for the safe design of engineered nanomaterials (ENM). This includes new improved characterization endpoints, screening, and detection methods for in vitro and in vivo toxicity testing. These tools also contribute greatly to nanosafety research applied to nanomedicines.Topics include The impacts of nanotechnology on biomedicine, including functionalization for tissue-specific targeting, the biointeractions of multifunctional nanoparticle-based therapy, and the ability to control specific physicochemical properties of nanoparticles The requirements for proper detection, measurement, and assessment both for workplace exposure and in consumer products—with a focus on potential health and safety implications Predictive modeling, using quantitative nanostructure activity relationships to predict the pharmacokinetics and biodistribution of nanomaterials in the body Specific methodologies, imaging, and techniques to assess nanomaterials from the manufacturing process to nanomedicine applications Tools for assessing nanoparticle toxicity and the limitations of detection methods for assessing toxicity in both in vivo and in vitro systems and at the single cell and tissue levels Toxicity of nanomaterials to specific organ systems, cell–based targeting to tumors, and other biomedical applications The difficulty of conducting risk assessments and the need for addressing knowledge gaps, especially with long-term studies A roadmap for future research The development of nanotechnology-based products must be complemented with appropriate validated methods to assess, monitor, manage, and reduce the potential risks of ENM to human health and the environment. This volume provides a cogent survey of advances in this area by a well-respected and diverse group of international scientists.
£180.00
John Wiley and Sons Ltd Green Synthesis of Nanomaterials for Bioenergy Applications
An authoritative summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application for environmental sustainability Green Synthesis of Nanomaterials for Bioenergy Applications is an important guide that provides information on the fabrication of nanomaterial and the application of low cost, green methods. The book also explores the impact on various existing bioenergy approaches. Throughout the book, the contributors—noted experts on the topic—offer a reliable summary of the quest for an environmentally sustainable synthesis process of nanomaterials and their application to the field of environmental sustainability. The green synthesis of nanoparticles process has been widely accepted as a promising technique that can be applied to a variety of fields. The green nanotechnology-based production processes to fabricate nanomaterials operates under green conditions without the intervention of toxic chemicals. The book’s exploration of more reliable and sustainable processes for the synthesis of nanomaterials, can lead to the commercial application of the economically viability of low-cost biofuels production. This important book: Summarizes the quest for an environmentally sustainable synthesis process of nanomaterials for their application to the field of environmental sustainability Offers an alternate, sustainable green energy approach that can be commercially implemented worldwide Covers recent approaches such as fabrication of nanomaterial that apply low cost, green methods and examines its impact on various existing bioenergy applications Written for researchers, academics and students of nanotechnology, nanosciences, bioenergy, material science, environmental sciences, and pollution control, Green Synthesis of Nanomaterials for Bioenergy Applications is a must-have guide that covers green synthesis and characterization of nanomaterials for cost effective bioenergy applications.
£154.95
Pan Stanford Publishing Pte Ltd Novel Compound Semiconductor Nanowires: Materials, Devices, and Applications
One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D–2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.
£114.00
Taylor & Francis Inc Organic Solar Cells: Materials, Devices, Interfaces, and Modeling
Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing.Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.
£150.00
Taylor & Francis Inc Nanotechnology for Cancer Therapy
While simultaneous breakthroughs occurring in molecular biology and nanoscience/technology will ultimately revolutionize all of medicine, it is with our efforts to prevent, diagnose, and treat cancer that many of the most dramatic advances will occur. In support of this potential, the U.S. National Cancer Institute (NCI) established the Alliance for Nanotechnology in Cancer in 2004 and pledged $144.3 million in funding over the next five years. Edited by one of the most dynamic pioneers in the field, Nanotechnology for Cancer Therapy focuses on those nanoscientific and nanotechnological strategies that are evolving as the most promising for the imaging and treatment of cancer. Among the various approaches considered, nanotechnology offers great possibilities for the targeted delivery of drugs and genes to tumor sites and the ultimate replacement of those chemotherapeutic agents so compromised by side effects.Within this volume, the expertise of world-renowned academic and industrial researchers is brought together to provide a comprehensive treatise. Composed of 38 chapters, the book is divided into 7 sections that cover -Fundamentals of targeting strategies, nanotechnology characterization for cancer therapy, and USFDA guidelines on approval of nanotechnology products Polymeric conjugates used for tumor-targeted imaging and delivery, including imaging to evaluate therapeutic efficacy Polymeric nanoparticle systems that emphasize biodegradable, long-circulating nanoparticles for passive and active targeting Polymeric micellar assemblies, where sophisticated chemistry is leading to novel nanosystems that can provide efficient delivery to tumors Dendritic nanostructures used for cancer imaging and therapy Liposome-based delivery systems -- the oldest nanotechnology method employed in cancer therapy Other lipid nanosystems used for targeted delivery, including those tha
£240.00
Wiley-VCH Verlag GmbH Nanomembranes: Materials, Properties, and Applications
Nanomembranes Provides a thorough overview of the field of nanomembranes, covering materials science, fabrication processes, properties, and applications In recent years, the unique nature of the nanomembrane has led to new technology and applications in areas including flexible electronics, photonics, robotics, biology, microelectromechanical systems, and lab-on-a-chip (LOC) devices. Highly suitable for assembling three-dimensional structures, the nanomembrane can be integrated into devices and systems using conventional thin film technology. Nanomembranes: Materials, Properties, and Applications is an up-to-date review of recent advances in the rapidly expanding area within nanoscience and technology. Edited by leading researchers, the book covers the fabrications, properties, applications, design concepts, and challenges of nanomembranes and other nano-scale assembled structures. In-depth chapters address topics including three- and four-dimensional origami, nanomembrane-based transient electronics, development of inorganic flexible electronics, magnetic nanomembranes, bio-applications of three-dimensional scaffolds, nanomembrane-based micro and nanorobots, passive electronic components based on self-rolled-up nanomembranes, and more. Covers nanomembranes as well as nanostructures made from semiconductor, metal, insulator, polymer, and composite materials Provides broad overview of two-dimensional materials and assembled structures including origami and kirigami structures Explores applications of nanomembrane such as batteries, supercapacitors, robotics, electronics, and cell scaffolding Discusses nanomembranes made from polymeric materials, mechanical forces during deformation, and assembly of nanomembranes, Addresses monolayer two-dimensional materials such as graphene and transition metal dichalcogenides Nanomembranes: Materials, Properties, and Applications is an invaluable resource for material scientists, engineers, physicists, and chemists in academia and industry, and an excellent text for graduate students and researchers across disciplines with interest in the rapidly growing field.
£135.00
University of Minnesota Press Scale Theory: A Nondisciplinary Inquiry
A pioneering call for a new understanding of scale across the humanities How is it possible that you are—simultaneously—cells, atoms, a body, quarks, a component in an ecological network, a moment in the thermodynamic dispersal of the sun, and an element in the gravitational whirl of galaxies? In this way, we routinely transform reality into things already outside of direct human experience, things we hardly comprehend even as we speak of DNA, climate effects, toxic molecules, and viruses. How do we find ourselves with these disorienting layers of scale? Enter Scale Theory, which provides a foundational theory of scale that explains how scale works, the parameters of scalar thinking, and how scale refigures reality—that teaches us how to think in terms of scale, no matter where our interests may lie. Joshua DiCaglio takes us on a fascinating journey through six thought experiments that provide clarifying yet provocative definitions for scale and new ways of thinking about classic concepts ranging from unity to identity. Because our worldviews and philosophies are largely built on nonscalar experience, he then takes us slowly through the ways scale challenges and reconfigures objects, subjects, and relations. Scale Theory is, in a sense, nondisciplinary—weaving together a dizzying array of sciences (from nanoscience to ecology) with discussions from the humanities (from philosophy to rhetoric). In the process, a curious pattern emerges: attempts to face the significance of scale inevitably enter terrain closer to mysticism than science. Rather than dismiss this connection, DiCaglio examines the reasons for it, redefining mysticism in terms of scale and integrating contemplative philosophies into the discussion. The result is a powerful account of the implications and challenges of scale, attuned to the way scale transforms both reality and ourselves.
£97.20
John Wiley & Sons Inc Smart and Sustainable Approaches for Optimizing Performance of Wireless Networks: Real-time Applications
SMART AND SUSTAINABLE APPROACHES FOR OPTIMIZING PERFORMANCE OF WIRELESS NETWORK Explores the intersection of sustainable growth, green computing and automation, and performance optimization of 5G wireless networks Smart and Sustainable Approaches for Optimizing Performance of Wireless Networks explores how wireless sensing applications, green computing, and Big Data analytics can increase the energy efficiency and environmental sustainability of real-time applications across areas such as healthcare, agriculture, construction, and manufacturing. Bringing together an international team of expert contributors, this authoritative volume highlights the limitations of conventional technologies and provides methodologies and approaches for addressing Quality of Service (QOS) issues and optimizing network performance. In-depth chapters cover topics including blockchain-assisted secure data sharing, smart 5G Internet of Things (IoT) scenarios, intelligent management of ad hoc networks, and the use of Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) techniques in smart healthcare, smart manufacturing, and smart agriculture. Covers design, implementation, optimization, and sustainability of wireless and sensor-based networks Discusses concepts of sustainability and green computing as well as their relevance to society and the environment Addresses green automation applications in various disciplines such as computer science, nanoscience, information technology (IT), and biochemistry Explores various smart and sustainable approaches for current wireless and sensor-based networks Includes detailed case studies of current methodologies, applications, and implementations Smart and Sustainable Approaches for Optimizing Performance of Wireless Networks: Real-time Applications is an essential resource for academic researchers and industry professionals working to integrate sustainable development and Information and Communications Technology (ICT).
£110.95
University of Minnesota Press Scale Theory: A Nondisciplinary Inquiry
A pioneering call for a new understanding of scale across the humanities How is it possible that you are—simultaneously—cells, atoms, a body, quarks, a component in an ecological network, a moment in the thermodynamic dispersal of the sun, and an element in the gravitational whirl of galaxies? In this way, we routinely transform reality into things already outside of direct human experience, things we hardly comprehend even as we speak of DNA, climate effects, toxic molecules, and viruses. How do we find ourselves with these disorienting layers of scale? Enter Scale Theory, which provides a foundational theory of scale that explains how scale works, the parameters of scalar thinking, and how scale refigures reality—that teaches us how to think in terms of scale, no matter where our interests may lie. Joshua DiCaglio takes us on a fascinating journey through six thought experiments that provide clarifying yet provocative definitions for scale and new ways of thinking about classic concepts ranging from unity to identity. Because our worldviews and philosophies are largely built on nonscalar experience, he then takes us slowly through the ways scale challenges and reconfigures objects, subjects, and relations. Scale Theory is, in a sense, nondisciplinary—weaving together a dizzying array of sciences (from nanoscience to ecology) with discussions from the humanities (from philosophy to rhetoric). In the process, a curious pattern emerges: attempts to face the significance of scale inevitably enter terrain closer to mysticism than science. Rather than dismiss this connection, DiCaglio examines the reasons for it, redefining mysticism in terms of scale and integrating contemplative philosophies into the discussion. The result is a powerful account of the implications and challenges of scale, attuned to the way scale transforms both reality and ourselves.
£23.39
Wiley-VCH Verlag GmbH Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics
Graphdiyne Discover the most cutting-edge developments in the study of graphdiyne from a pioneer of the field In Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics, accomplished chemist Dr. Yuliang Li delivers a practical and insightful compilation of theoretical and experimental developments in the study of graphdiyne. Of interest to both academics and industrial researchers in the fields of nanoscience, organic chemistry, carbon science, and renewable energies, the book systematically summarizes recent research into the exciting new material. Discover information about the properties of graphdiyne through theoretical simulations and experimental characterizations, as well as the development of graphdiyne with appropriate preparation technology. Learn to create new graphdiyne-based materials and better understand its intrinsic properties. Find out about synthetic methodologies, the controlled growth of aggregated state structures, and structural characterization. In addition to demonstrating the interdisciplinary potential and relevance of graphdiyne, the book also offers readers: A thorough introduction to basic structure and band gap engineering, including molecular and electronic structure, mechanical properties, and the layers structure of bulk graphdiyne Explorations of Graphdiyne synthesis and characterization, including films, nanotube arrays and nanowires, nanowalls, and nanosheets, as well as characterization methods Discussions of the functionalization of graphdiyne, including heteroatom doping, metal decoration, and absorption of guest molecules Rigorous treatments of Graphdiyne-based materials in catalytic applications, including photo- and electrocatalysts Perfect for organic chemists, electronics engineers, materials scientists, and physicists, Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics will also find its place on the bookshelves of surface and solid-state chemists, electrochemists, and catalytic chemists seeking a one-stop reference on this rising-star carbon material.
£124.15
Wiley-VCH Verlag GmbH Charge and Energy Transfer Dynamics in Molecular Systems
Charge and Energy Transfer Dynamics in Molecular Systems Comprehensive resource offering knowledge on charge and energy transfer dynamics in molecular systems and nanostructures Charge and Energy Transfer Dynamics in Molecular Systems provides a unified description of different charge and energy transfer phenomena in molecular systems with emphasis on the theory, bridging the regimes of coherent and dissipative dynamics and thus presenting classic rate theories as well as modern treatments of ultrafast phenomena. Starting from microscopic models, the common features of the different transfer processes are highlighted, along with applications ranging from vibrational energy flow in large polyatomic molecules, the motion of protons in solution, up to the concerted dynamics of electronic and nuclear degrees of freedom in molecules and molecular aggregates. The newly revised and updated Fourth Edition contains a more detailed coverage of recent developments in density matrix theory, mixed quantum-classical methods for dynamics simulations, and a substantially expanded treatment of time-resolved spectroscopy. The book is written in an easy-to-follow style, including detailed mathematical derivations, thus making even complex concepts understandable and applicable. Charge and Energy Transfer Dynamics in Molecular Systems includes information on: Electronic and vibrational molecular states, covering molecular Schrödinger equation, Born—Oppenheimer separation and approximation, Hartree-Fock equations and other electronic structure methods Dynamics of isolated and open quantum systems, covering multidimensional wave packet dynamics, and different variants of density operator equations Interaction of molecular systems with radiation fields, covering linear and nonlinear optical response using the correlation function approach Intramolecular electronic transitions, covering optical transition and internal conversion processes Transfer processes of electrons, protons, and electronic excitation energy Providing in-depth coverage of the subject, Charge and Energy Transfer Dynamics in Molecular Systems is an essential resource for anyone working on timely problems of energy and charge transfer in physics, chemistry and biophysics as well as for all engaged in nanoscience and organic electronics.
£145.00
John Wiley & Sons Inc Quantum Physics for Scientists and Technologists: Fundamental Principles and Applications for Biologists, Chemists, Computer Scientists, and Nanotechnologists
Quantum Physics for Scientists and Technologists is a self-contained, comprehensive review of this complex branch of science. The book demystifies difficult concepts and views the subject through non-physics fields such as computer science, biology, chemistry, and nanotechnology. It explains key concepts and phenomena in the language of non-physics majors and with simple math, assuming no prior knowledge of the topic. This cohesive book begins with the wavefunction to develop the basic principles of quantum mechanics such as the uncertainty principle and wave-particle duality. Comprehensive coverage of quantum theory is presented, supported by experimental results and explained through applications and examples without the use of abstract and complex mathematical tools or formalisms. From there, the book: Takes the mystery out of the Schrodinger equation, the fundamental equation of quantum physics, by applying it to atoms Shows how quantum mechanics explains the periodic table of elements Introduces the quantum mechanical concept of spin and spin quantum number, along with Pauli's Exclusion Principle regarding the occupation of quantum states Addresses quantum states of molecules in terms of rotation and vibration of diatomic molecules Explores the interface between classical statistical mechanics and quantum statistical mechanics Discusses quantum mechanics as a common thread through different fields of nanoscience and nanotechnology Each chapter features real-world applications of one or more quantum mechanics principles. "Study Checkpoints" and problems with solutions are presented throughout to make difficult concepts easy to understand. In addition, pictures, tables, and diagrams with full explanations are used to present data and further explain difficult concepts. This book is designed as a complete course in quantum mechanics for senior undergraduates and first-year graduate students in non-physics majors. It also applies to courses such as modern physics, physical chemistry and nanotechnology. The material is also accessible to scientists, engineers, and technologists working in the fields of computer science, biology, chemistry, engineering, and nanotechnology.
£120.95
Nova Science Publishers Inc Multidisciplinary Science and Advanced Technologies
Multidisciplinary Science and Advanced Technologies form a vast and diverse class of the engineering science and research divisions. This book discusses novel design techniques and smart mechanisms, as well as innovations that might be utilized in the future. Scientific modification can control industrial-scale assembly, a process that ultimately provides specific material function, depending on electronic development for advancements. Furthermore, the combination of supramolecular multidisciplinary technologies allows for the exploration of applicationâbased materials. Smart materials are vital for the in-depth analysis of various morphologies. This book is an international forum for comprehensive soft-condensed matter physics, nanoscience principles, nanotechnology tools, and nanotechnology applications in the environmental, energy, and electronics sector, including a discussion of ethical issues in these fields. This book reviews the applications and market potential of a variety of media, including mirror, glazing, and display products, such as low-information content displays for banners and labels. The physicist, chemical engineer, materials scientist, nanotechnologist, and biologist at all levels, as well as academicians for unique device-based applications in various fields, will benefit from this book. Readers will gain an understanding of the practical and highly sensitive business fields for specific disciplinarians. The goal is to provide readers a broad review from a materials perspective, so that teachers can provide a comprehensive review of this technology to students. This book also highlights the entire gamut of smart engineering technologies and the materials design process of fabrications from past to present and future perspectives. The syllabi of various technical universities and research institutes are examined, explaining the basic perceptions of this emerging field. In science today, the major focus of research and development in synthetic materials and spectroscopic analysis broadly deals with materials on the atomic and molecular scales. The vision for the future is to move beyond these already existing applications and explore new realms of electronic applications.
£155.69
John Wiley & Sons Inc Laser Induced Breakdown Spectroscopy (LIBS): Concepts, Instrumentation, Data Analysis and Applications, 2 Volume Set
Laser Induced Breakdown Spectroscopy (LIBS) Essential resource covering the field of LIBS, with respect to its fundamentals, established and novel applications, and future prospects Laser Induced Breakdown Spectroscopy (LIBS), presents in two comprehensive volumes a thorough discussion of the basic principles of the method, including important recently available data which can lead to a better characterization of the LIBS plasma. This extensive work contains detailed discussions on the lasers, spectrometers, and detectors that can be used for LIBS apparatuses and describes various instrumentation, ranging from basic setups to more advanced configurations. As a modern resource, the work includes the newest advances and capabilities of LIBS instruments, featuring the recent developments of Dual-Pulse LIBS, Femtosecond LIBS, and Micro-LIBS as well as their applications. Throughout, the contributions discuss the analytical capabilities of the method in terms of detection limits, accuracy, and precision of measurements for a variety of samples. Lastly, an extensive range of applications is presented, including food technology, environmental science, nuclear reactors, nanoscience and nanotechnology, and biological and biomedical developments. Sample topics covered within the work include: iagnostics of laser induced plasma (LIP): LIBS plasma and its characteristics, factors affecting the LIBS plasma, methods of enhancing LIBS sensitivity, and LTE/non-LTE plasmas Instrumental developments in LIBS: light collection system and spectral detection systems, handheld LIBS, deep sea LIBS, and industrial sorters and analyzers Femtosecond laser ablation: laser-matter interaction, laser absorption, energy transport, ablation mechanisms and threshold, and plasma characterization Micro-analysis and LIBS imaging: microjoule laser sources, scaling libs to microjoule energies, micrometer scaling, advanced applications, and future prospects Spectroscopic and analytical scientists working with LIBS will find this wide-ranging reference immensely helpful in developing LIBS instrumentation and applications. Researchers and students in natural sciences and related programs of study will be able to use the work to acquire foundational knowledge on the method and learn about cutting-edge advancements being made in the field.
£325.00
Nova Science Publishers Inc New Materials: Preparation, Properties and Applications in the Aspect of Nanotechnology
This book covers a wide field of theoretical and experimental investigations of organic and inorganic systems: preparation methods, functional properties characterization and modification and practical applications. The first section includes studies in carbon structures of reduced dimensionality. Covered topics are: thermodynamic modeling of the behavior of fullerenes at heating in Argon, studying carbon nanotubes by X-ray diffraction, modelling of oscillating systems by cognitive digital systems. The number of chapters describes the structural investigations of a wide variety of materials such as different sorts of steel in grained modification for mining equipment, elements of rock-breaking, crushing and grinding equipment; degradation of dielectrics, including nanostructured dielectrics, by migratory polarization. Quantum chemical calculations were traditionally of a special interest of modelling nanostructured nuclei's. This method was applied to study titanium and vanadium nanocoating's formation from gas phase and to study quaternary ammonium compounds for modification of metal surfaces. Quantum-chemical calculations in bio-medical aspect made possible visualization ischemia-reperfusion injury using indocyanine green. The final paper in the section contains a scientific essay, where peculiarities of quantum mechanics are traversed through findings of nanotechnology. Section 2 includes the chapters related to preparation methods for the materials containing various components. It is opened by research of nanoporous alumina, which is a promising material for printed circuit boards. Heat flow distribution was found to possess some interesting features. Physical properties of electrochemically grown metallic filaments studied by electron microscopy anddiversity from dendritic to fractal structure was described. Fractal thematic was also addressed with simulation of breakdown in plasma channel. Section 3 is focused on the possibility of using new nanomaterials of different composition and design as powders for corundum ceramics, perfluorsulfonic membranes, refining noble methods from ultrafine valuable components, metals regeneration from oxide, and surface nanostructuring laser mechanisms. Mentoring aspect - education of the young researchers involved in nanoscience and technology -- is covered in chapter "Students Training on "Nanoengineering", which is also a very important and promising scientific field.
£155.69
Taylor & Francis Inc Nanotechnology 2008: Life Sciences, Medicine, and Bio Materials
These proceedings from the 2008 NSTI Nanotech conference provide the most prestigious forum in the world for leading nano scientists. The papers from the conference have been compiled into three volumes to create the most authoritative and comprehensive compendium available across all of nanotechnology. Including the latest information on industrial development, investments, and ventures, each volume explores cutting-edge research and applications. Volume II covers various aspects of cancer treatment, biomarkers, nanoparticles, drug delivery systems, nanobiotechnology, nanomedicine, nanoneurology, sensors, and soft nanotechnology.
£99.99
Taylor & Francis Ltd Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Volume 2
First published in 2007. Routledge is an imprint of Taylor & Francis, an informa company.
£66.99
Taylor & Francis Ltd Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show on CD-ROM
£162.00