Search results for ""author ulrich l. rohde""
John Wiley & Sons Inc Microwave and Wireless Synthesizers: Theory and Design
The new edition of the leading resource on designing digital frequency synthesizers from microwave and wireless applications, fully updated to reflect the most modern integrated circuits and semiconductors Microwave and Wireless Synthesizers: Theory and Design, Second Edition, remains the standard text on the subject by providing complete and up-to-date coverage of both practical and theoretical aspects of modern frequency synthesizers and their components. Featuring contributions from leading experts in the field, this classic volume describes loop fundamentals, noise and spurious responses, special loops, loop components, multiloop synthesizers, and more. Practical synthesizer examples illustrate the design of a high-performance hybrid synthesizer and performance measurement techniques—offering readers clear instruction on the various design steps and design rules. The second edition includes extensively revised content throughout, including a modern approach to dealing with the noise and spurious response of loops and updated material on digital signal processing and architectures. Reflecting today's technology, new practical and validated examples cover a combination of analog and digital synthesizers and hybrid systems. Enhanced and expanded chapters discuss implementations of direct digital synthesis (DDS) architectures, the voltage-controlled oscillator (VCO), crystal and other high-Q based oscillators, arbitrary waveform generation, vector signal generation, and other current tools and techniques. Now requiring no additional literature to be useful, this comprehensive, one-stop resource: Provides a fully reviewed, updated, and enhanced presentation of microwave and wireless synthesizers Presents a clear mathematical method for designing oscillators for best noise performance at both RF and microwave frequencies Contains new illustrations, figures, diagrams, and examples Includes extensive appendices to aid in calculating phase noise in free-running oscillators, designing VHF and UHF oscillators with CAD software, using state-of-the-art synthesizer chips, and generating millimeter wave frequencies using the delay line principle Containing numerous designs of proven circuits and more than 500 relevant citations from scientific journal and papers, Microwave and Wireless Synthesizers: Theory and Design, Second Edition, is a must-have reference for engineers working in the field of radio communication, and the perfect textbook for advanced electrical engineering students.
£120.95
John Wiley & Sons Inc The Design of Modern Microwave Oscillators for Wireless Applications: Theory and Optimization
Delivering the best possible solution for phase noise and output power efficiency in oscillators This complete and thorough analysis of microwave oscillators investigates all aspects of design, with particular emphasis on operating conditions, choice of resonators and transistors, phase noise, and output power. It covers both bipolar transistors and FETs. Following the authors' guidance, readers learn how to design microwave oscillators and VCOs that can be tuned over a very wide frequency range, yet have good phase noise, are low cost, and are small in size. All the essential topics in oscillator design and development are covered, including: * Device and resonator technology * Study of noise sources * Analysis methods * Design, calculation, and optimization methodologies * Practical design of single and coupled oscillators While most of the current literature in the field concentrates on classic design strategies based on measurements, simulation, and optimization of output power and phase noise, this text offers a unique approach that focuses on the complete understanding of the design process. The material demonstrates important design rules starting with the selection of best oscillator topology, choice of transistors, and complete phase noise analysis that leads to optimum performance of all relevant oscillator features. Also included are CMOS oscillators, which recently have become important in cellular applications. For readers interested in specialized applications and topics, a full chapter provides all the necessary references. The contents of the text fall into two major categories: * Chapters 1 through 9 deal with a very detailed and expanded single resonator oscillator, including a thorough treatment of both nonlinear analysis and phase noise * Chapters 10 and 11 use the knowledge obtained and apply it to multiple coupled oscillators (synchronized oscillators) This text is partially based on research sponsored by the Defense Advanced Research Projects Agency (DARPA) and the United States Army and conducted by Synergy Microwave Corporation. With the wealth of information provided for the analysis and practical design of single and synchronized low-noise microwave oscillators, it is recommended reading for all RF microwave engineers. In addition, the text's comprehensive, step-by-step approach makes it an excellent graduate-level textbook.
£182.95
John Wiley & Sons Inc Microwave Circuit Design Using Linear and Nonlinear Techniques
Four leaders in the field of microwave circuit design share their newest insights into the latest aspects of the technology The third edition of Microwave Circuit Design Using Linear and Nonlinear Techniques delivers an insightful and complete analysis of microwave circuit design, from their intrinsic and circuit properties to circuit design techniques for maximizing performance in communication and radar systems. This new edition retains what remains relevant from previous editions of this celebrated book and adds brand-new content on CMOS technology, GaN, SiC, frequency range, and feedback power amplifiers in the millimeter range region. The third edition contains over 200 pages of new material. The distinguished engineers, academics, and authors emphasize the commercial applications in telecommunications and cover all aspects of transistor technology. Software tools for design and microwave circuits are included as an accompaniment to the book. In addition to information about small and large-signal amplifier design and power amplifier design, readers will benefit from the book's treatment of a wide variety of topics, like: An in-depth discussion of the foundations of RF and microwave systems, including Maxwell's equations, applications of the technology, analog and digital requirements, and elementary definitions A treatment of lumped and distributed elements, including a discussion of the parasitic effects on lumped elements Descriptions of active devices, including diodes, microwave transistors, heterojunction bipolar transistors, and microwave FET Two-port networks, including S-Parameters from SPICE analysis and the derivation of transducer power gain Perfect for microwave integrated circuit designers, the third edition of Microwave Circuit Design Using Linear and Nonlinear Techniques also has a place on the bookshelves of electrical engineering researchers and graduate students. It's comprehensive take on all aspects of transistors by world-renowned experts in the field places this book at the vanguard of microwave circuit design research.
£165.95
John Wiley & Sons Inc Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners
An accessible introduction to the fundamentals of calculus needed to solve current problems in engineering and the physical sciences I ntegration is an important function of calculus, and Introduction to Integral Calculus combines fundamental concepts with scientific problems to develop intuition and skills for solving mathematical problems related to engineering and the physical sciences. The authors provide a solid introduction to integral calculus and feature applications of integration, solutions of differential equations, and evaluation methods. With logical organization coupled with clear, simple explanations, the authors reinforce new concepts to progressively build skills and knowledge, and numerous real-world examples as well as intriguing applications help readers to better understand the connections between the theory of calculus and practical problem solving. The first six chapters address the prerequisites needed to understand the principles of integral calculus and explore such topics as anti-derivatives, methods of converting integrals into standard form, and the concept of area. Next, the authors review numerous methods and applications of integral calculus, including: Mastering and applying the first and second fundamental theorems of calculus to compute definite integrals Defining the natural logarithmic function using calculus Evaluating definite integrals Calculating plane areas bounded by curves Applying basic concepts of differential equations to solve ordinary differential equations With this book as their guide, readers quickly learn to solve a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Integral Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.
£109.95
John Wiley & Sons Inc Introduction to Differential Calculus: Systematic Studies with Engineering Applications for Beginners
Enables readers to apply the fundamentals of differential calculus to solve real-life problems in engineering and the physical sciences Introduction to Differential Calculus fully engages readers by presenting the fundamental theories and methods of differential calculus and then showcasing how the discussed concepts can be applied to real-world problems in engineering and the physical sciences. With its easy-to-follow style and accessible explanations, the book sets a solid foundation before advancing to specific calculus methods, demonstrating the connections between differential calculus theory and its applications. The first five chapters introduce underlying concepts such as algebra, geometry, coordinate geometry, and trigonometry. Subsequent chapters present a broad range of theories, methods, and applications in differential calculus, including: Concepts of function, continuity, and derivative Properties of exponential and logarithmic function Inverse trigonometric functions and their properties Derivatives of higher order Methods to find maximum and minimum values of a function Hyperbolic functions and their properties Readers are equipped with the necessary tools to quickly learn how to understand a broad range of current problems throughout the physical sciences and engineering that can only be solved with calculus. Examples throughout provide practical guidance, and practice problems and exercises allow for further development and fine-tuning of various calculus skills. Introduction to Differential Calculus is an excellent book for upper-undergraduate calculus courses and is also an ideal reference for students and professionals alike who would like to gain a further understanding of the use of calculus to solve problems in a simplified manner.
£139.95