Search results for ""author howard a stone""
Royal Society of Chemistry Fluid-Structure Interactions in Low-Reynolds-Number Flows
Fluid-structure interactions have been well studied over the years but most of the focus has been on high Reynolds number flows, inertially dominated flows where the drag force from the fluid typically varies as the square of the local fluid speed. There are though a large number of fluid-structure interaction problems at low values of the Reynolds number, where the fluid effects are dominated by viscosity and the drag force from the fluid typically varies linearly with the local fluid speed, which are applicable to many current research areas including hydrodynamics, microfluidics and hemodynamics. Edited by experts in complex fluids, Fluid-Structure Interactions in Low-Reynolds-Number Flows is the first book to bring together topics on this subject including elasticity of beams, flow in tubes, mechanical instabilities induced by complex liquids drying, blood flow, theoretical models for low-Reynolds number locomotion and capsules in flow. The book includes introductory chapters highlighting important background ideas about low Reynolds number flows and elasticity to make the subject matter more approachable to those new to the area across engineering, physics, chemistry and biology.
£179.00
Royal Society of Chemistry Out-of-equilibrium Soft Matter: Active Fluids
The term active fluids refers to motions that are created by transforming energy from the surroundings into directed motion. There are many examples, both natural and synthetic, including individual swimming bacteria or motile cells, drops and bubbles that move owing to surface stresses (so-called Marangoni motions), and chemical- or optical-driven colloids. Investigations into active fluids provide new insights into non-equilibrium systems, have the potential for novel applications, and open new directions in physics, chemistry, biology and engineering. This book provides an expert introduction to active fluids systems, covering simple to complex environments. It explains the interplay of chemical processes and hydrodynamics, including the roles of mechanical and rheological properties across active fluids, with reference to experiments, theory, and simulations. These concepts are discussed for a variety of scenarios, such as the trajectories of microswimmers, cell crawling and fluid stirring, and apply to collective behaviours of dense suspensions and active gels. Emerging avenues of research are highlighted, ranging from the role of active processes for biological functions to programmable active materials, showcasing the exciting potential of this rapidly-evolving research field.
£179.00