Search results for ""Author Yuval Z Flicker""
World Scientific Publishing Co Pte Ltd Automorphic Representations Of Low Rank Groups
The area of automorphic representations is a natural continuation of studies in number theory and modular forms. A guiding principle is a reciprocity law relating the infinite dimensional automorphic representations with finite dimensional Galois representations. Simple relations on the Galois side reflect deep relations on the automorphic side, called “liftings”. This book concentrates on two initial examples: the symmetric square lifting from SL(2) to PGL(3), reflecting the 3-dimensional representation of PGL(2) in SL(3); and basechange from the unitary group U(3, E/F) to GL(3, E), [E : F] = 2.The book develops the technique of comparison of twisted and stabilized trace formulae and considers the “Fundamental Lemma” on orbital integrals of spherical functions. Comparison of trace formulae is simplified using “regular” functions and the “lifting” is stated and proved by means of character relations.This permits an intrinsic definition of partition of the automorphic representations of SL(2) into packets, and a definition of packets for U(3), a proof of multiplicity one theorem and rigidity theorem for SL(2) and for U(3), a determination of the self-contragredient representations of PGL(3) and those on GL(3, E) fixed by transpose-inverse-bar. In particular, the multiplicity one theorem is new and recent.There are applications to construction of Galois representations by explicit decomposition of the cohomology of Shimura varieties of U(3) using Deligne's (proven) conjecture on the fixed point formula.
£160.00
World Scientific Publishing Co Pte Ltd Automorphic Forms And Shimura Varieties Of Pgsp(2)
The area of automorphic representations is a natural continuation of studies in the 19th and 20th centuries on number theory and modular forms. A guiding principle is a reciprocity law relating infinite dimensional automorphic representations with finite dimensional Galois representations. Simple relations on the Galois side reflect deep relations on the automorphic side, called “liftings.' This in-depth book concentrates on an initial example of the lifting, from a rank 2 symplectic group PGSp(2) to PGL(4), reflecting the natural embedding of Sp(2,≤) in SL(4, ≤). It develops the technique of comparing twisted and stabilized trace formulae. It gives a detailed classification of the automorphic and admissible representation of the rank two symplectic PGSp(2) by means of a definition of packets and quasi-packets, using character relations and trace formulae identities. It also shows multiplicity one and rigidity theorems for the discrete spectrum.Applications include the study of the decomposition of the cohomology of an associated Shimura variety, thereby linking Galois representations to geometric automorphic representations.To put these results in a general context, the book concludes with a technical introduction to Langlands' program in the area of automorphic representations. It includes a proof of known cases of Artin's conjecture.
£112.00