Search results for ""Author Krishnan Balasubramanian""
John Wiley & Sons Inc Relativistic Effects in Chemistry, Theory and Techniques and Relativistic Effects in Chemistry
E = mc2 and the Periodic Table . . . RELATIVISTIC EFFECTS IN CHEMISTRY This century's most famous equation, Einstein's special theory of relativity, transformed our comprehension of the nature of time and matter. Today, making use of the theory in a relativistic analysis of heavy molecules, that is, computing the properties and nature of electrons, is the work of chemists intent on exploring the mysteries of minute particles. The first work of its kind, Relativistic Effects in Chemistry details the computational and analytical methods used in studying the relativistic effects in chemical bonding as well as the spectroscopic properties of molecules containing very heavy atoms. The first of two independent volumes, Part A: Theory and Techniques describes the basic techniques of relativistic quantum chemistry. Its systematic five-part format begins with a detailed exposition of Einstein's special theory of relativity, the significance of relativity in chemistry, and the nature of relativistic effects, especially with molecules containing both main group atoms and transition metal atoms. Chapter 3 discusses the fundamentals of relativistic quantum mechanics starting from the Klein-Gordon equation through such advanced constructs as the Breit-Pauli and Dirac multielectron Hamiltonian. Modern computational techniques, of importance with problems involving very heavy molecules, are outlined in Chapter 4. These include the relativistic effective core potentials, ab initio CASSCF, CI, and RCI techniques. Chapter 5 describes relativistic symmetry using the double group symmetry of molecules and the classification of relativistic electronic states and is of special importance to chemists or spectroscopists interested in computing or analyzing electronic states of molecules containing very heavy atoms. An exceptional introduction to one of chemistry's foremost analytical techniques, Relativistic Effects in Chemistry is also evidence of the still unending reverberations of Einstein's revolutionary theory.
£209.95
John Wiley & Sons Inc Relativistic Effects in Chemistry, Set
A practical, comprehensive reference for relativistic quantum chemistry Relativistic Effects in Chemistry is a comprehensive reference, and the only book to provide comprehensive computational results of all covered species. Covering all aspects of relativistic quantum chemistry, this set is split into two volumes for ease of use: Part A describes basic theory and techniques used to study the relativistic effects of chemical bonding and spectroscopic properties of molecules containing both main group and transition metal atoms; Part B describes very heavy atoms, and provides results of computations on clusters, halides, hydrides, chalconides, lanthanides, and actinides, including metals in fullerene cages.
£339.95
John Wiley & Sons Inc Relativistic Effects in Chemistry, Applications
E = mc2 and the Periodic Table . . . RELATIVISTIC EFFECTS IN CHEMISTRY This century's most famous equation, Einstein's special theory of relativity, transformed our comprehension of the nature of time and matter. Today, making use of the theory in a relativistic analysis of heavy molecules, that is, computing the properties and nature of electrons, is the work of chemists intent on exploring the mysteries of minute particles. The first work of its kind, Relativistic Effects in Chemistry details the computational and analytical methods used in studying the relativistic effects in chemical bonding as well as the spectroscopic properties of molecules containing very heavy atoms. The second of two independent volumes, Part B: Applications contains specific experimental and theoretical results on the electronic states of molecules containing very heavy atoms as well as their spectroscopic properties and electronic structures. The first one-volume catalog of comprehensive computational results, Part B details: * the relativistic effects on the electronic structure of transition metal clusters, such as the Cu, Ag, and Au triad * the electronic structure of open-shell transition metal clusters such as Rh3 and Ir3 * the electronic and spectroscopic properties of heteronuclear diatomics of main group p-block elements from Ga to Po, especially the diatomic hydrides, halides, and chalconides * the clusters of the very heavy main group p-block elements from Ga to Po * the relativistic effects on molecules containing lanthanide and actinide atoms, including metals inside fullerenes. An extraordinary new examination of Periodic Table elements, Part B of Relativistic Effects in Chemistry is also evidence of the enduring influence of Einstein's revolutionary theory.
£209.95