Search results for ""Author Chein-I Chang""
John Wiley & Sons Inc Hyperspectral Data Processing: Algorithm Design and Analysis
Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author’s first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap. Many results in this book are either new or have not been explored, presented, or published in the public domain. These include various aspects of endmember extraction, unsupervised linear spectral mixture analysis, hyperspectral information compression, hyperspectral signal coding and characterization, as well as applications to conceal target detection, multispectral imaging, and magnetic resonance imaging. Hyperspectral Data Processing contains eight major sections: Part I: provides fundamentals of hyperspectral data processing Part II: offers various algorithm designs for endmember extraction Part III: derives theory for supervised linear spectral mixture analysis Part IV: designs unsupervised methods for hyperspectral image analysis Part V: explores new concepts on hyperspectral information compression Parts VI & VII: develops techniques for hyperspectral signal coding and characterization Part VIII: presents applications in multispectral imaging and magnetic resonance imaging Hyperspectral Data Processing compiles an algorithm compendium with MATLAB codes in an appendix to help readers implement many important algorithms developed in this book and write their own program codes without relying on software packages. Hyperspectral Data Processing is a valuable reference for those who have been involved with hyperspectral imaging and its techniques, as well those who are new to the subject.
£205.71
Taylor & Francis Inc High Performance Computing in Remote Sensing
Solutions for Time-Critical Remote Sensing ApplicationsThe recent use of latest-generation sensors in airborne and satellite platforms is producing a nearly continual stream of high-dimensional data, which, in turn, is creating new processing challenges. To address the computational requirements of time-critical applications, researchers have begun incorporating high performance computing (HPC) models in remote sensing missions. High Performance Computing in Remote Sensing is one of the first volumes to explore state-of-the-art HPC techniques in the context of remote sensing problems. It focuses on the computational complexity of algorithms that are designed for parallel computing and processing. A Diverse Collection of Parallel Computing Techniques and Architectures The book first addresses key computing concepts and developments in remote sensing. It also covers application areas not necessarily related to remote sensing, such as multimedia and video processing. Each subsequent chapter illustrates a specific parallel computing paradigm, including multiprocessor (cluster-based) systems, large-scale and heterogeneous networks of computers, grid computing platforms, and specialized hardware architectures for remotely sensed data analysis and interpretation. An Interdisciplinary Forum to Encourage Novel Ideas The extensive reviews of current and future developments combined with thoughtful perspectives on the potential challenges of adapting HPC paradigms to remote sensing problems will undoubtedly foster collaboration and development among many fields.
£133.41