Search results for ""Author Azamal Husen""
Springer Verlag, Singapore Medicinal Plants: Their Response to Abiotic Stress
This book provides a comprehensive overview of medicinal plants and their interaction with abiotic stress in terms of morphological, physiological, biochemical, and molecular variations, and explains the adaptation and tolerance mechanisms involved. It presents various mechanisms that become operative in medicinal plants to combat stressful situations. The book discusses the secondary metabolites and/or bioactive compounds produced in medicinal plants under abiotic stress conditions, and the use of biostimulants and/or phytoprotectants to alleviate the adverse effects of abiotic stresses on medicinal plants. Additionally, it is likely to address opportunities and challenges in molecular and omics studies of medicinal plants under abiotic stress conditions. Overall, the chapters are developed by eminent subject experts with due care and clarity and cover an up-to-date literature review with relevant illustrations. The book would cater to the need of graduate and post-graduate students, researchers as well as scientists, and may attract the attention of pharmaceutical companies/industrialists and health policymakers.
£149.99
Springer Nature Switzerland AG Smart Nanomaterials in Biomedical Applications
With the start of 2020, the wrath of pandemic challenged the scientific community to develop more advanced drug delivery approaches for biomedical applications, endowing conventional drugs with additional therapeutic benefits and minimum side effects. Although significant advancements have been done in the field of drug delivery, there is a need to focus towards strategizing novel and improved drug delivery systems that should be convenient and cost-effective to the patients, and simultaneously they should also provide financial benefits to pharmaceutical companies. Controlled drug delivery technology offers ample opportunities and scope for improvising the therapeutic efficacy of drugs via optimizing the drug release rate and time. For this endeavour, smart nanomaterials have served as remarkable candidates for biomedical applications, owing to their ground-breaking properties and design. The development of such nanomaterials requires a broad knowledge related to their physio-chemical properties, molecular structure, mechanisms by which the nanomaterials interact with the cells, and methods by which drugs are released at the site of action. This knowledge must also be allied with the knowledge of signaling crosstalk mechanisms that are modulated by the nanomaterial-drugs composite. It can be anticipated that these emerging drug delivery technologies can facilitate the world to successfully encounter such pandemic outbursts in the future in a cost-effective and time-effective manner. The chapters in this book deal with the advanced technologies and approaches that can benefit advanced students, researchers, and industry experts in developing smart and intelligent nanomaterials for future biomedical applications, and development, manufacturing, and commercialization for controlled and targeted drug delivery.
£119.99
Springer Nature Switzerland AG Non-Timber Forest Products: Food, Healthcare and Industrial Applications
Forests cover thirty-one percent of the world’s land surface, provide habitats for animals, livelihoods for humans, and generate household income in rural areas of developing countries. They also supply other essential amenities, for instance, they filter water, control water runoff, protect soil erosion, regulate climate, store nutrients, and facilitate countless non-timber forest products (NTFPs). The main NTFPs comprise herbs, grasses, climbers, shrubs, and trees used for food, fodder, fuel, beverages, medicine, animals, birds and fish for food, fur, and feathers, as well as their products, like honey, lac, silk, and paper. At present, these products play an important role in the daily life and well-being of millions of people worldwide. Hence the forest and its products are very valuable and often NTFPs are considered as the ‘potential pillars of sustainable forestry’. NTFPs items like food, herbal drugs, forage, fuel-wood, fountain, fibre, bamboo, rattans, leaves, barks, resins, and gums have been continuously used and exploited by humans. Wild edible foods are rich in terms of vitamins, protein, fat, sugars, and minerals. Additionally, some NTFPs are used as important raw materials for pharmaceutical industries. Numerous industry-based NTFPs are now being exported in considerable quantities by developing countries. Accordingly, this sector facilitates employment opportunities in remote rural areas. So, these developments also highlight the role of NTFPs in poverty alleviation in different regions of the world. This book provides a wide spectrum of information on NTFPs, including important references. We hope that the compendium of chapters in this book will be very useful as a reference book for graduate and postgraduate students and researchers in various disciplines of forestry, botany, medical botany, economic botany, ecology, agroforestry, and biology. Additionally, this book should be useful for scientists, experts, and consultants associated with the forestry sector.
£139.99
Springer Verlag, Singapore Augmenting Crop Productivity in Stress Environment
The book inculcates a holistic approach to improve crop productivity and quality for ensuring food security and nutrition to all. This warrants to identify various stress conditions prevalent globally and tailor crop adaptability and productivity to the maximum accordingly, employing physio-molecular modern tools and techniques with judicious amalgamation with conventional crop husbandry. As a result, the book chapters encompass diverse environmental factors, internal physio-molecular processes and their modulations with a final goal of expanding area under cultivation by utilization of constraint terrains of poor site quality and augmenting sustainable crop productivity and quality on the face of rapidly changing climate. The book includes role of plant hormones, nano-sensors, nanomaterials etc. in stress tolerance responses, capturing recent advancement in the field of stress tolerance, enlarging scope of coverage by gleaning modern literature and providing glimpses of futuristic scenario of agriculture practices that can render ‘balance staple food rich in nutrition, vitamins and minerals’ to teeming billions of global human populations. Thus, the book provides a comprehensive overview of the role of stress environment and understanding stress physiology for developing stress tolerant crops. The book covers current knowledge and future prospects to achieve enhanced food security under stress environment of crops. The renowned contributors elegantly crafted each chapter, suited alike to both classroom texts for graduate students and reference material for researchers. The language and style are simple and lucid with liberal use of illustrations. This book should be on the shelf of university/ personal libraries for inquisitive students and enlightened researchers.
£199.99